Thermoelectric SnTe with Band Convergence, Dense Dislocations, and Interstitials through Sn Self‐Compensation and Mn Alloying

SnTe is known as an eco‐friendly analogue of PbTe without toxic elements. However, the application potentials of pure SnTe are limited because of its high hole carrier concentration derived from intrinsic Sn vacancies, which lead to a high electrical thermal conductivity and low Seebeck coefficient....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-09, Vol.14 (37), p.e1802615-n/a
Hauptverfasser: Guo, Fengkai, Cui, Bo, Liu, Yuan, Meng, Xianfu, Cao, Jian, Zhang, Yang, He, Ran, Liu, Weishu, Wu, Haijun, Pennycook, Stephen J., Cai, Wei, Sui, Jiehe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 37
container_start_page e1802615
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 14
creator Guo, Fengkai
Cui, Bo
Liu, Yuan
Meng, Xianfu
Cao, Jian
Zhang, Yang
He, Ran
Liu, Weishu
Wu, Haijun
Pennycook, Stephen J.
Cai, Wei
Sui, Jiehe
description SnTe is known as an eco‐friendly analogue of PbTe without toxic elements. However, the application potentials of pure SnTe are limited because of its high hole carrier concentration derived from intrinsic Sn vacancies, which lead to a high electrical thermal conductivity and low Seebeck coefficient. In this study, Sn self‐compensation and Mn alloying could significantly improve the Seebeck coefficients in the whole temperature range through simultaneous carrier concentration optimization and band engineering, thereby leading to a large improvement of the power factors. Combining precipitates and atomic‐scale interstitials due to Mn alloying with dense dislocations induced by long time annealing, the lattice thermal conductivity is drastically reduced. As a result, an enhanced figure of merit (ZT) of 1.35 is achieved for the composition of Sn0.94Mn0.09Te at 873 K and the ZTave from 300 to 873 K is boosted to 0.78, which is of great significance for practical application. Hitherto, the ZTmax and ZTave of this work are the highest values among all single‐element‐doped SnTe systems. Self‐compensation and band convergence synergistically lead to improved PF values in the whole temperature range. For the first time, dense dislocations and Mn interstitials introduced in this material sharply reduce the lattice thermal conductivity. Among the Sn1.03−xMnxTe samples, Sn0.94Mn0.09Te shows the highest figure of merit (ZT) of 1.35 at 873 K and highest ZTave of 0.78 from 300 to 873 K.
doi_str_mv 10.1002/smll.201802615
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2102830303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2102830303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-e7fdf83f1436d110840144190ad83e8240053cd12b5aeb1cbcb2364290769f5a3</originalsourceid><addsrcrecordid>eNqFkM1OGzEURq2KqgTabZeVJbZJeq89v8s0UIgU1EXS9WjGcycx8tipPQFlBY_QZ-RJmBBIl5UX9uKcY-lj7CvCGAHE99AaMxaAGYgE4w9sgAnKUZKJ_OT4RjhlZyHcAUgUUfqJnUpATJM4HrDH5Zp868iQ6rxWfGGXxB90t-Y_SlvzqbP35FdkFQ35JdlA_FIH41TZaWfDkO-hme3Ih053ujSBd2vvtqt1X-ILMs3z09-paze9-qq8CreWT4xxO21Xn9nHprfoy9t9zn7_vFpOb0bzX9ez6WQ-UjKV8YjSpm4y2WAkkxoRsggwijCHss4kZSICiKWqUVRxSRWqSlVCJpHIIU3yJi7lObs4dDfe_dlS6Io7t_W2_7IQCCKT0J-eGh8o5V0Inppi43Vb-l2BUOz3LvZ7F8e9e-HbW3ZbtVQf8feBeyA_AA_a0O4_uWJxO5__i78A6cON7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102830303</pqid></control><display><type>article</type><title>Thermoelectric SnTe with Band Convergence, Dense Dislocations, and Interstitials through Sn Self‐Compensation and Mn Alloying</title><source>Access via Wiley Online Library</source><creator>Guo, Fengkai ; Cui, Bo ; Liu, Yuan ; Meng, Xianfu ; Cao, Jian ; Zhang, Yang ; He, Ran ; Liu, Weishu ; Wu, Haijun ; Pennycook, Stephen J. ; Cai, Wei ; Sui, Jiehe</creator><creatorcontrib>Guo, Fengkai ; Cui, Bo ; Liu, Yuan ; Meng, Xianfu ; Cao, Jian ; Zhang, Yang ; He, Ran ; Liu, Weishu ; Wu, Haijun ; Pennycook, Stephen J. ; Cai, Wei ; Sui, Jiehe</creatorcontrib><description>SnTe is known as an eco‐friendly analogue of PbTe without toxic elements. However, the application potentials of pure SnTe are limited because of its high hole carrier concentration derived from intrinsic Sn vacancies, which lead to a high electrical thermal conductivity and low Seebeck coefficient. In this study, Sn self‐compensation and Mn alloying could significantly improve the Seebeck coefficients in the whole temperature range through simultaneous carrier concentration optimization and band engineering, thereby leading to a large improvement of the power factors. Combining precipitates and atomic‐scale interstitials due to Mn alloying with dense dislocations induced by long time annealing, the lattice thermal conductivity is drastically reduced. As a result, an enhanced figure of merit (ZT) of 1.35 is achieved for the composition of Sn0.94Mn0.09Te at 873 K and the ZTave from 300 to 873 K is boosted to 0.78, which is of great significance for practical application. Hitherto, the ZTmax and ZTave of this work are the highest values among all single‐element‐doped SnTe systems. Self‐compensation and band convergence synergistically lead to improved PF values in the whole temperature range. For the first time, dense dislocations and Mn interstitials introduced in this material sharply reduce the lattice thermal conductivity. Among the Sn1.03−xMnxTe samples, Sn0.94Mn0.09Te shows the highest figure of merit (ZT) of 1.35 at 873 K and highest ZTave of 0.78 from 300 to 873 K.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201802615</identifier><identifier>PMID: 30117655</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alloying ; band convergence ; Carrier density ; Compensation ; Dislocation density ; dislocations ; Electrical resistivity ; Figure of merit ; Heat conductivity ; Heat transfer ; Intermetallic compounds ; Interstitials ; Lattice vacancies ; Nanotechnology ; Precipitates ; Seebeck effect ; self‐compensation ; SnTe ; Thermal conductivity ; Tin tellurides</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2018-09, Vol.14 (37), p.e1802615-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-e7fdf83f1436d110840144190ad83e8240053cd12b5aeb1cbcb2364290769f5a3</citedby><cites>FETCH-LOGICAL-c3735-e7fdf83f1436d110840144190ad83e8240053cd12b5aeb1cbcb2364290769f5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201802615$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201802615$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30117655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Fengkai</creatorcontrib><creatorcontrib>Cui, Bo</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Meng, Xianfu</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>He, Ran</creatorcontrib><creatorcontrib>Liu, Weishu</creatorcontrib><creatorcontrib>Wu, Haijun</creatorcontrib><creatorcontrib>Pennycook, Stephen J.</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Sui, Jiehe</creatorcontrib><title>Thermoelectric SnTe with Band Convergence, Dense Dislocations, and Interstitials through Sn Self‐Compensation and Mn Alloying</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>SnTe is known as an eco‐friendly analogue of PbTe without toxic elements. However, the application potentials of pure SnTe are limited because of its high hole carrier concentration derived from intrinsic Sn vacancies, which lead to a high electrical thermal conductivity and low Seebeck coefficient. In this study, Sn self‐compensation and Mn alloying could significantly improve the Seebeck coefficients in the whole temperature range through simultaneous carrier concentration optimization and band engineering, thereby leading to a large improvement of the power factors. Combining precipitates and atomic‐scale interstitials due to Mn alloying with dense dislocations induced by long time annealing, the lattice thermal conductivity is drastically reduced. As a result, an enhanced figure of merit (ZT) of 1.35 is achieved for the composition of Sn0.94Mn0.09Te at 873 K and the ZTave from 300 to 873 K is boosted to 0.78, which is of great significance for practical application. Hitherto, the ZTmax and ZTave of this work are the highest values among all single‐element‐doped SnTe systems. Self‐compensation and band convergence synergistically lead to improved PF values in the whole temperature range. For the first time, dense dislocations and Mn interstitials introduced in this material sharply reduce the lattice thermal conductivity. Among the Sn1.03−xMnxTe samples, Sn0.94Mn0.09Te shows the highest figure of merit (ZT) of 1.35 at 873 K and highest ZTave of 0.78 from 300 to 873 K.</description><subject>Alloying</subject><subject>band convergence</subject><subject>Carrier density</subject><subject>Compensation</subject><subject>Dislocation density</subject><subject>dislocations</subject><subject>Electrical resistivity</subject><subject>Figure of merit</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Intermetallic compounds</subject><subject>Interstitials</subject><subject>Lattice vacancies</subject><subject>Nanotechnology</subject><subject>Precipitates</subject><subject>Seebeck effect</subject><subject>self‐compensation</subject><subject>SnTe</subject><subject>Thermal conductivity</subject><subject>Tin tellurides</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OGzEURq2KqgTabZeVJbZJeq89v8s0UIgU1EXS9WjGcycx8tipPQFlBY_QZ-RJmBBIl5UX9uKcY-lj7CvCGAHE99AaMxaAGYgE4w9sgAnKUZKJ_OT4RjhlZyHcAUgUUfqJnUpATJM4HrDH5Zp868iQ6rxWfGGXxB90t-Y_SlvzqbP35FdkFQ35JdlA_FIH41TZaWfDkO-hme3Ih053ujSBd2vvtqt1X-ILMs3z09-paze9-qq8CreWT4xxO21Xn9nHprfoy9t9zn7_vFpOb0bzX9ez6WQ-UjKV8YjSpm4y2WAkkxoRsggwijCHss4kZSICiKWqUVRxSRWqSlVCJpHIIU3yJi7lObs4dDfe_dlS6Io7t_W2_7IQCCKT0J-eGh8o5V0Inppi43Vb-l2BUOz3LvZ7F8e9e-HbW3ZbtVQf8feBeyA_AA_a0O4_uWJxO5__i78A6cON7g</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Guo, Fengkai</creator><creator>Cui, Bo</creator><creator>Liu, Yuan</creator><creator>Meng, Xianfu</creator><creator>Cao, Jian</creator><creator>Zhang, Yang</creator><creator>He, Ran</creator><creator>Liu, Weishu</creator><creator>Wu, Haijun</creator><creator>Pennycook, Stephen J.</creator><creator>Cai, Wei</creator><creator>Sui, Jiehe</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201809</creationdate><title>Thermoelectric SnTe with Band Convergence, Dense Dislocations, and Interstitials through Sn Self‐Compensation and Mn Alloying</title><author>Guo, Fengkai ; Cui, Bo ; Liu, Yuan ; Meng, Xianfu ; Cao, Jian ; Zhang, Yang ; He, Ran ; Liu, Weishu ; Wu, Haijun ; Pennycook, Stephen J. ; Cai, Wei ; Sui, Jiehe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-e7fdf83f1436d110840144190ad83e8240053cd12b5aeb1cbcb2364290769f5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloying</topic><topic>band convergence</topic><topic>Carrier density</topic><topic>Compensation</topic><topic>Dislocation density</topic><topic>dislocations</topic><topic>Electrical resistivity</topic><topic>Figure of merit</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Intermetallic compounds</topic><topic>Interstitials</topic><topic>Lattice vacancies</topic><topic>Nanotechnology</topic><topic>Precipitates</topic><topic>Seebeck effect</topic><topic>self‐compensation</topic><topic>SnTe</topic><topic>Thermal conductivity</topic><topic>Tin tellurides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Fengkai</creatorcontrib><creatorcontrib>Cui, Bo</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Meng, Xianfu</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>He, Ran</creatorcontrib><creatorcontrib>Liu, Weishu</creatorcontrib><creatorcontrib>Wu, Haijun</creatorcontrib><creatorcontrib>Pennycook, Stephen J.</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Sui, Jiehe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Fengkai</au><au>Cui, Bo</au><au>Liu, Yuan</au><au>Meng, Xianfu</au><au>Cao, Jian</au><au>Zhang, Yang</au><au>He, Ran</au><au>Liu, Weishu</au><au>Wu, Haijun</au><au>Pennycook, Stephen J.</au><au>Cai, Wei</au><au>Sui, Jiehe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric SnTe with Band Convergence, Dense Dislocations, and Interstitials through Sn Self‐Compensation and Mn Alloying</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2018-09</date><risdate>2018</risdate><volume>14</volume><issue>37</issue><spage>e1802615</spage><epage>n/a</epage><pages>e1802615-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>SnTe is known as an eco‐friendly analogue of PbTe without toxic elements. However, the application potentials of pure SnTe are limited because of its high hole carrier concentration derived from intrinsic Sn vacancies, which lead to a high electrical thermal conductivity and low Seebeck coefficient. In this study, Sn self‐compensation and Mn alloying could significantly improve the Seebeck coefficients in the whole temperature range through simultaneous carrier concentration optimization and band engineering, thereby leading to a large improvement of the power factors. Combining precipitates and atomic‐scale interstitials due to Mn alloying with dense dislocations induced by long time annealing, the lattice thermal conductivity is drastically reduced. As a result, an enhanced figure of merit (ZT) of 1.35 is achieved for the composition of Sn0.94Mn0.09Te at 873 K and the ZTave from 300 to 873 K is boosted to 0.78, which is of great significance for practical application. Hitherto, the ZTmax and ZTave of this work are the highest values among all single‐element‐doped SnTe systems. Self‐compensation and band convergence synergistically lead to improved PF values in the whole temperature range. For the first time, dense dislocations and Mn interstitials introduced in this material sharply reduce the lattice thermal conductivity. Among the Sn1.03−xMnxTe samples, Sn0.94Mn0.09Te shows the highest figure of merit (ZT) of 1.35 at 873 K and highest ZTave of 0.78 from 300 to 873 K.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30117655</pmid><doi>10.1002/smll.201802615</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2018-09, Vol.14 (37), p.e1802615-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_journals_2102830303
source Access via Wiley Online Library
subjects Alloying
band convergence
Carrier density
Compensation
Dislocation density
dislocations
Electrical resistivity
Figure of merit
Heat conductivity
Heat transfer
Intermetallic compounds
Interstitials
Lattice vacancies
Nanotechnology
Precipitates
Seebeck effect
self‐compensation
SnTe
Thermal conductivity
Tin tellurides
title Thermoelectric SnTe with Band Convergence, Dense Dislocations, and Interstitials through Sn Self‐Compensation and Mn Alloying
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20SnTe%20with%20Band%20Convergence,%20Dense%20Dislocations,%20and%20Interstitials%20through%20Sn%20Self%E2%80%90Compensation%20and%20Mn%20Alloying&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Guo,%20Fengkai&rft.date=2018-09&rft.volume=14&rft.issue=37&rft.spage=e1802615&rft.epage=n/a&rft.pages=e1802615-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201802615&rft_dat=%3Cproquest_cross%3E2102830303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2102830303&rft_id=info:pmid/30117655&rfr_iscdi=true