Deep Asymmetric Networks with a Set of Node-wise Variant Activation Functions

This work presents deep asymmetric networks with a set of node-wise variant activation functions. The nodes' sensitivities are affected by activation function selections such that the nodes with smaller indices become increasingly more sensitive. As a result, features learned by the nodes are s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-05
Hauptverfasser: Jang, Jinhyeok, Cho, Hyunjoong, Kim, Jaehong, Lee, Jaeyeon, Yang, Seungjoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jang, Jinhyeok
Cho, Hyunjoong
Kim, Jaehong
Lee, Jaeyeon
Yang, Seungjoon
description This work presents deep asymmetric networks with a set of node-wise variant activation functions. The nodes' sensitivities are affected by activation function selections such that the nodes with smaller indices become increasingly more sensitive. As a result, features learned by the nodes are sorted by the node indices in the order of their importance. Asymmetric networks not only learn input features but also the importance of those features. Nodes of lesser importance in asymmetric networks can be pruned to reduce the complexity of the networks, and the pruned networks can be retrained without incurring performance losses. We validate the feature-sorting property using both shallow and deep asymmetric networks as well as deep asymmetric networks transferred from famous networks.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2102637350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2102637350</sourcerecordid><originalsourceid>FETCH-proquest_journals_21026373503</originalsourceid><addsrcrecordid>eNqNjsEKgkAURYcgSMp_eNBaGGcy20olbXJTtJXBnjSWMzZvTPr7DPqAVvfAOYs7YYGQMo42KyFmLCRqOOdinYokkQE77hA7yOjdtuidrqBAP1h3Jxi0v4GCE3qwNRT2itGgCeGinFbGQ1Z5_VJeWwN5b6ov0IJNa_UgDH87Z8t8f94eos7ZZ4_ky8b2zoyqFPF4QqYy4fK_6gNZSD1u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102637350</pqid></control><display><type>article</type><title>Deep Asymmetric Networks with a Set of Node-wise Variant Activation Functions</title><source>Free E- Journals</source><creator>Jang, Jinhyeok ; Cho, Hyunjoong ; Kim, Jaehong ; Lee, Jaeyeon ; Yang, Seungjoon</creator><creatorcontrib>Jang, Jinhyeok ; Cho, Hyunjoong ; Kim, Jaehong ; Lee, Jaeyeon ; Yang, Seungjoon</creatorcontrib><description>This work presents deep asymmetric networks with a set of node-wise variant activation functions. The nodes' sensitivities are affected by activation function selections such that the nodes with smaller indices become increasingly more sensitive. As a result, features learned by the nodes are sorted by the node indices in the order of their importance. Asymmetric networks not only learn input features but also the importance of those features. Nodes of lesser importance in asymmetric networks can be pruned to reduce the complexity of the networks, and the pruned networks can be retrained without incurring performance losses. We validate the feature-sorting property using both shallow and deep asymmetric networks as well as deep asymmetric networks transferred from famous networks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Activation ; Asymmetry ; Networks ; Nodes</subject><ispartof>arXiv.org, 2019-05</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Jang, Jinhyeok</creatorcontrib><creatorcontrib>Cho, Hyunjoong</creatorcontrib><creatorcontrib>Kim, Jaehong</creatorcontrib><creatorcontrib>Lee, Jaeyeon</creatorcontrib><creatorcontrib>Yang, Seungjoon</creatorcontrib><title>Deep Asymmetric Networks with a Set of Node-wise Variant Activation Functions</title><title>arXiv.org</title><description>This work presents deep asymmetric networks with a set of node-wise variant activation functions. The nodes' sensitivities are affected by activation function selections such that the nodes with smaller indices become increasingly more sensitive. As a result, features learned by the nodes are sorted by the node indices in the order of their importance. Asymmetric networks not only learn input features but also the importance of those features. Nodes of lesser importance in asymmetric networks can be pruned to reduce the complexity of the networks, and the pruned networks can be retrained without incurring performance losses. We validate the feature-sorting property using both shallow and deep asymmetric networks as well as deep asymmetric networks transferred from famous networks.</description><subject>Activation</subject><subject>Asymmetry</subject><subject>Networks</subject><subject>Nodes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjsEKgkAURYcgSMp_eNBaGGcy20olbXJTtJXBnjSWMzZvTPr7DPqAVvfAOYs7YYGQMo42KyFmLCRqOOdinYokkQE77hA7yOjdtuidrqBAP1h3Jxi0v4GCE3qwNRT2itGgCeGinFbGQ1Z5_VJeWwN5b6ov0IJNa_UgDH87Z8t8f94eos7ZZ4_ky8b2zoyqFPF4QqYy4fK_6gNZSD1u</recordid><startdate>20190517</startdate><enddate>20190517</enddate><creator>Jang, Jinhyeok</creator><creator>Cho, Hyunjoong</creator><creator>Kim, Jaehong</creator><creator>Lee, Jaeyeon</creator><creator>Yang, Seungjoon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190517</creationdate><title>Deep Asymmetric Networks with a Set of Node-wise Variant Activation Functions</title><author>Jang, Jinhyeok ; Cho, Hyunjoong ; Kim, Jaehong ; Lee, Jaeyeon ; Yang, Seungjoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21026373503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Asymmetry</topic><topic>Networks</topic><topic>Nodes</topic><toplevel>online_resources</toplevel><creatorcontrib>Jang, Jinhyeok</creatorcontrib><creatorcontrib>Cho, Hyunjoong</creatorcontrib><creatorcontrib>Kim, Jaehong</creatorcontrib><creatorcontrib>Lee, Jaeyeon</creatorcontrib><creatorcontrib>Yang, Seungjoon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Jinhyeok</au><au>Cho, Hyunjoong</au><au>Kim, Jaehong</au><au>Lee, Jaeyeon</au><au>Yang, Seungjoon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Deep Asymmetric Networks with a Set of Node-wise Variant Activation Functions</atitle><jtitle>arXiv.org</jtitle><date>2019-05-17</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>This work presents deep asymmetric networks with a set of node-wise variant activation functions. The nodes' sensitivities are affected by activation function selections such that the nodes with smaller indices become increasingly more sensitive. As a result, features learned by the nodes are sorted by the node indices in the order of their importance. Asymmetric networks not only learn input features but also the importance of those features. Nodes of lesser importance in asymmetric networks can be pruned to reduce the complexity of the networks, and the pruned networks can be retrained without incurring performance losses. We validate the feature-sorting property using both shallow and deep asymmetric networks as well as deep asymmetric networks transferred from famous networks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2102637350
source Free E- Journals
subjects Activation
Asymmetry
Networks
Nodes
title Deep Asymmetric Networks with a Set of Node-wise Variant Activation Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Deep%20Asymmetric%20Networks%20with%20a%20Set%20of%20Node-wise%20Variant%20Activation%20Functions&rft.jtitle=arXiv.org&rft.au=Jang,%20Jinhyeok&rft.date=2019-05-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2102637350%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2102637350&rft_id=info:pmid/&rfr_iscdi=true