Deep Asymmetric Networks with a Set of Node-wise Variant Activation Functions
This work presents deep asymmetric networks with a set of node-wise variant activation functions. The nodes' sensitivities are affected by activation function selections such that the nodes with smaller indices become increasingly more sensitive. As a result, features learned by the nodes are s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-05 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jang, Jinhyeok Cho, Hyunjoong Kim, Jaehong Lee, Jaeyeon Yang, Seungjoon |
description | This work presents deep asymmetric networks with a set of node-wise variant activation functions. The nodes' sensitivities are affected by activation function selections such that the nodes with smaller indices become increasingly more sensitive. As a result, features learned by the nodes are sorted by the node indices in the order of their importance. Asymmetric networks not only learn input features but also the importance of those features. Nodes of lesser importance in asymmetric networks can be pruned to reduce the complexity of the networks, and the pruned networks can be retrained without incurring performance losses. We validate the feature-sorting property using both shallow and deep asymmetric networks as well as deep asymmetric networks transferred from famous networks. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2102637350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2102637350</sourcerecordid><originalsourceid>FETCH-proquest_journals_21026373503</originalsourceid><addsrcrecordid>eNqNjsEKgkAURYcgSMp_eNBaGGcy20olbXJTtJXBnjSWMzZvTPr7DPqAVvfAOYs7YYGQMo42KyFmLCRqOOdinYokkQE77hA7yOjdtuidrqBAP1h3Jxi0v4GCE3qwNRT2itGgCeGinFbGQ1Z5_VJeWwN5b6ov0IJNa_UgDH87Z8t8f94eos7ZZ4_ky8b2zoyqFPF4QqYy4fK_6gNZSD1u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102637350</pqid></control><display><type>article</type><title>Deep Asymmetric Networks with a Set of Node-wise Variant Activation Functions</title><source>Free E- Journals</source><creator>Jang, Jinhyeok ; Cho, Hyunjoong ; Kim, Jaehong ; Lee, Jaeyeon ; Yang, Seungjoon</creator><creatorcontrib>Jang, Jinhyeok ; Cho, Hyunjoong ; Kim, Jaehong ; Lee, Jaeyeon ; Yang, Seungjoon</creatorcontrib><description>This work presents deep asymmetric networks with a set of node-wise variant activation functions. The nodes' sensitivities are affected by activation function selections such that the nodes with smaller indices become increasingly more sensitive. As a result, features learned by the nodes are sorted by the node indices in the order of their importance. Asymmetric networks not only learn input features but also the importance of those features. Nodes of lesser importance in asymmetric networks can be pruned to reduce the complexity of the networks, and the pruned networks can be retrained without incurring performance losses. We validate the feature-sorting property using both shallow and deep asymmetric networks as well as deep asymmetric networks transferred from famous networks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Activation ; Asymmetry ; Networks ; Nodes</subject><ispartof>arXiv.org, 2019-05</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Jang, Jinhyeok</creatorcontrib><creatorcontrib>Cho, Hyunjoong</creatorcontrib><creatorcontrib>Kim, Jaehong</creatorcontrib><creatorcontrib>Lee, Jaeyeon</creatorcontrib><creatorcontrib>Yang, Seungjoon</creatorcontrib><title>Deep Asymmetric Networks with a Set of Node-wise Variant Activation Functions</title><title>arXiv.org</title><description>This work presents deep asymmetric networks with a set of node-wise variant activation functions. The nodes' sensitivities are affected by activation function selections such that the nodes with smaller indices become increasingly more sensitive. As a result, features learned by the nodes are sorted by the node indices in the order of their importance. Asymmetric networks not only learn input features but also the importance of those features. Nodes of lesser importance in asymmetric networks can be pruned to reduce the complexity of the networks, and the pruned networks can be retrained without incurring performance losses. We validate the feature-sorting property using both shallow and deep asymmetric networks as well as deep asymmetric networks transferred from famous networks.</description><subject>Activation</subject><subject>Asymmetry</subject><subject>Networks</subject><subject>Nodes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjsEKgkAURYcgSMp_eNBaGGcy20olbXJTtJXBnjSWMzZvTPr7DPqAVvfAOYs7YYGQMo42KyFmLCRqOOdinYokkQE77hA7yOjdtuidrqBAP1h3Jxi0v4GCE3qwNRT2itGgCeGinFbGQ1Z5_VJeWwN5b6ov0IJNa_UgDH87Z8t8f94eos7ZZ4_ky8b2zoyqFPF4QqYy4fK_6gNZSD1u</recordid><startdate>20190517</startdate><enddate>20190517</enddate><creator>Jang, Jinhyeok</creator><creator>Cho, Hyunjoong</creator><creator>Kim, Jaehong</creator><creator>Lee, Jaeyeon</creator><creator>Yang, Seungjoon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190517</creationdate><title>Deep Asymmetric Networks with a Set of Node-wise Variant Activation Functions</title><author>Jang, Jinhyeok ; Cho, Hyunjoong ; Kim, Jaehong ; Lee, Jaeyeon ; Yang, Seungjoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21026373503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Asymmetry</topic><topic>Networks</topic><topic>Nodes</topic><toplevel>online_resources</toplevel><creatorcontrib>Jang, Jinhyeok</creatorcontrib><creatorcontrib>Cho, Hyunjoong</creatorcontrib><creatorcontrib>Kim, Jaehong</creatorcontrib><creatorcontrib>Lee, Jaeyeon</creatorcontrib><creatorcontrib>Yang, Seungjoon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Jinhyeok</au><au>Cho, Hyunjoong</au><au>Kim, Jaehong</au><au>Lee, Jaeyeon</au><au>Yang, Seungjoon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Deep Asymmetric Networks with a Set of Node-wise Variant Activation Functions</atitle><jtitle>arXiv.org</jtitle><date>2019-05-17</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>This work presents deep asymmetric networks with a set of node-wise variant activation functions. The nodes' sensitivities are affected by activation function selections such that the nodes with smaller indices become increasingly more sensitive. As a result, features learned by the nodes are sorted by the node indices in the order of their importance. Asymmetric networks not only learn input features but also the importance of those features. Nodes of lesser importance in asymmetric networks can be pruned to reduce the complexity of the networks, and the pruned networks can be retrained without incurring performance losses. We validate the feature-sorting property using both shallow and deep asymmetric networks as well as deep asymmetric networks transferred from famous networks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2102637350 |
source | Free E- Journals |
subjects | Activation Asymmetry Networks Nodes |
title | Deep Asymmetric Networks with a Set of Node-wise Variant Activation Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Deep%20Asymmetric%20Networks%20with%20a%20Set%20of%20Node-wise%20Variant%20Activation%20Functions&rft.jtitle=arXiv.org&rft.au=Jang,%20Jinhyeok&rft.date=2019-05-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2102637350%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2102637350&rft_id=info:pmid/&rfr_iscdi=true |