A novel WS2/NbSe2 vdW heterostructure as an ultrafast charging and discharging anode material for lithium-ion batteries

It is highly desirable to develop highly-efficient anode materials for rechargeable lithium-ion batteries, which not only require large storage capacities, but also high stabilities and superior electrical conductivities. In this work, the electronic structures, stabilities, and the Li adsorption pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (35), p.17040-17048
Hauptverfasser: Liu, Huating, Huang, Zongyu, Wu, Guang, Wu, Yanbing, Yuan, Guanghui, He, Chaoyu, Qi, Xiang, Zhong, Jianxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17048
container_issue 35
container_start_page 17040
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 6
creator Liu, Huating
Huang, Zongyu
Wu, Guang
Wu, Yanbing
Yuan, Guanghui
He, Chaoyu
Qi, Xiang
Zhong, Jianxin
description It is highly desirable to develop highly-efficient anode materials for rechargeable lithium-ion batteries, which not only require large storage capacities, but also high stabilities and superior electrical conductivities. In this work, the electronic structures, stabilities, and the Li adsorption preferences of lithiated WS2 and NbSe2 monolayers as well as a lithiated WS2/NbSe2 heterostructure were systematically investigated using first principles calculations. It was found that compared with the metallic NbSe2 monolayer, the WS2/NbSe2 heterostructure appears to have a new state occupation where there was no state occupation in the sole NbSe2 monolayer. The metallic character ensures good electrical conductivity for lithium-ion batteries. Additionally, the diffusion barrier of the WS2/NbSe2 heterostructure is lower than that of WS2 and NbSe2 monolayers. A lower diffusion barrier guarantees better charge and discharge performances of the WS2/NbSe2 heterostructure as a battery electrode. Most importantly, the heterostructure was predicted to have quite a high theoretical specific capacity. Our results manifest that the WS2/NbSe2 heterostructure is a promising anode material, and provide valuable insights into the exploration of a rich variety of two dimensional heterostructure materials for next-generation flexible energy storage and conversion devices.
doi_str_mv 10.1039/c8ta05531a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2102357480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2102357480</sourcerecordid><originalsourceid>FETCH-LOGICAL-g220t-176ef8575ade84a6dfd52f5e93ba79417ed777903c876e212c22a4f57737285e3</originalsourceid><addsrcrecordid>eNpNUEtLAzEQDqJgqb34CwKe1-ax2STHUnxB0UOVHsvsZtJu2W40yda_74oizmXmm-8xMIRcc3bLmbTzxmRgSkkOZ2QimGKFLm11_jcbc0lmKR3YWIaxytoJ-VzQPpywo5u1mD_XaxT05DZ0jxljSDkOTR4iUkgUejp0OYKHlGmzh7hr-924ddS16R8ODukRRnsLHfUh0q7N-3Y4Fm3oaQ35m8F0RS48dAlnv31K3u7vXpePxerl4Wm5WBU7IVguuK7QG6UVODQlVM47JbxCK2vQtuQandbaMtmYUSm4aISA0iutpRZGoZySm5_c9xg-Bkx5ewhD7MeTW8GZkGp8C5NfnFlexw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102357480</pqid></control><display><type>article</type><title>A novel WS2/NbSe2 vdW heterostructure as an ultrafast charging and discharging anode material for lithium-ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Liu, Huating ; Huang, Zongyu ; Wu, Guang ; Wu, Yanbing ; Yuan, Guanghui ; He, Chaoyu ; Qi, Xiang ; Zhong, Jianxin</creator><creatorcontrib>Liu, Huating ; Huang, Zongyu ; Wu, Guang ; Wu, Yanbing ; Yuan, Guanghui ; He, Chaoyu ; Qi, Xiang ; Zhong, Jianxin</creatorcontrib><description>It is highly desirable to develop highly-efficient anode materials for rechargeable lithium-ion batteries, which not only require large storage capacities, but also high stabilities and superior electrical conductivities. In this work, the electronic structures, stabilities, and the Li adsorption preferences of lithiated WS2 and NbSe2 monolayers as well as a lithiated WS2/NbSe2 heterostructure were systematically investigated using first principles calculations. It was found that compared with the metallic NbSe2 monolayer, the WS2/NbSe2 heterostructure appears to have a new state occupation where there was no state occupation in the sole NbSe2 monolayer. The metallic character ensures good electrical conductivity for lithium-ion batteries. Additionally, the diffusion barrier of the WS2/NbSe2 heterostructure is lower than that of WS2 and NbSe2 monolayers. A lower diffusion barrier guarantees better charge and discharge performances of the WS2/NbSe2 heterostructure as a battery electrode. Most importantly, the heterostructure was predicted to have quite a high theoretical specific capacity. Our results manifest that the WS2/NbSe2 heterostructure is a promising anode material, and provide valuable insights into the exploration of a rich variety of two dimensional heterostructure materials for next-generation flexible energy storage and conversion devices.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c8ta05531a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Batteries ; Diffusion barriers ; Electrical conductivity ; Electrical resistivity ; Electrode materials ; Energy storage ; First principles ; Heterostructures ; Lithium ; Lithium-ion batteries ; Monolayers ; Occupations ; Rechargeable batteries ; Specific capacity ; Storage batteries</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (35), p.17040-17048</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Huating</creatorcontrib><creatorcontrib>Huang, Zongyu</creatorcontrib><creatorcontrib>Wu, Guang</creatorcontrib><creatorcontrib>Wu, Yanbing</creatorcontrib><creatorcontrib>Yuan, Guanghui</creatorcontrib><creatorcontrib>He, Chaoyu</creatorcontrib><creatorcontrib>Qi, Xiang</creatorcontrib><creatorcontrib>Zhong, Jianxin</creatorcontrib><title>A novel WS2/NbSe2 vdW heterostructure as an ultrafast charging and discharging anode material for lithium-ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>It is highly desirable to develop highly-efficient anode materials for rechargeable lithium-ion batteries, which not only require large storage capacities, but also high stabilities and superior electrical conductivities. In this work, the electronic structures, stabilities, and the Li adsorption preferences of lithiated WS2 and NbSe2 monolayers as well as a lithiated WS2/NbSe2 heterostructure were systematically investigated using first principles calculations. It was found that compared with the metallic NbSe2 monolayer, the WS2/NbSe2 heterostructure appears to have a new state occupation where there was no state occupation in the sole NbSe2 monolayer. The metallic character ensures good electrical conductivity for lithium-ion batteries. Additionally, the diffusion barrier of the WS2/NbSe2 heterostructure is lower than that of WS2 and NbSe2 monolayers. A lower diffusion barrier guarantees better charge and discharge performances of the WS2/NbSe2 heterostructure as a battery electrode. Most importantly, the heterostructure was predicted to have quite a high theoretical specific capacity. Our results manifest that the WS2/NbSe2 heterostructure is a promising anode material, and provide valuable insights into the exploration of a rich variety of two dimensional heterostructure materials for next-generation flexible energy storage and conversion devices.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Diffusion barriers</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>First principles</subject><subject>Heterostructures</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Monolayers</subject><subject>Occupations</subject><subject>Rechargeable batteries</subject><subject>Specific capacity</subject><subject>Storage batteries</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNUEtLAzEQDqJgqb34CwKe1-ax2STHUnxB0UOVHsvsZtJu2W40yda_74oizmXmm-8xMIRcc3bLmbTzxmRgSkkOZ2QimGKFLm11_jcbc0lmKR3YWIaxytoJ-VzQPpywo5u1mD_XaxT05DZ0jxljSDkOTR4iUkgUejp0OYKHlGmzh7hr-924ddS16R8ODukRRnsLHfUh0q7N-3Y4Fm3oaQ35m8F0RS48dAlnv31K3u7vXpePxerl4Wm5WBU7IVguuK7QG6UVODQlVM47JbxCK2vQtuQandbaMtmYUSm4aISA0iutpRZGoZySm5_c9xg-Bkx5ewhD7MeTW8GZkGp8C5NfnFlexw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Liu, Huating</creator><creator>Huang, Zongyu</creator><creator>Wu, Guang</creator><creator>Wu, Yanbing</creator><creator>Yuan, Guanghui</creator><creator>He, Chaoyu</creator><creator>Qi, Xiang</creator><creator>Zhong, Jianxin</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2018</creationdate><title>A novel WS2/NbSe2 vdW heterostructure as an ultrafast charging and discharging anode material for lithium-ion batteries</title><author>Liu, Huating ; Huang, Zongyu ; Wu, Guang ; Wu, Yanbing ; Yuan, Guanghui ; He, Chaoyu ; Qi, Xiang ; Zhong, Jianxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g220t-176ef8575ade84a6dfd52f5e93ba79417ed777903c876e212c22a4f57737285e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Diffusion barriers</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>First principles</topic><topic>Heterostructures</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Monolayers</topic><topic>Occupations</topic><topic>Rechargeable batteries</topic><topic>Specific capacity</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Huating</creatorcontrib><creatorcontrib>Huang, Zongyu</creatorcontrib><creatorcontrib>Wu, Guang</creatorcontrib><creatorcontrib>Wu, Yanbing</creatorcontrib><creatorcontrib>Yuan, Guanghui</creatorcontrib><creatorcontrib>He, Chaoyu</creatorcontrib><creatorcontrib>Qi, Xiang</creatorcontrib><creatorcontrib>Zhong, Jianxin</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Huating</au><au>Huang, Zongyu</au><au>Wu, Guang</au><au>Wu, Yanbing</au><au>Yuan, Guanghui</au><au>He, Chaoyu</au><au>Qi, Xiang</au><au>Zhong, Jianxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel WS2/NbSe2 vdW heterostructure as an ultrafast charging and discharging anode material for lithium-ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>35</issue><spage>17040</spage><epage>17048</epage><pages>17040-17048</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>It is highly desirable to develop highly-efficient anode materials for rechargeable lithium-ion batteries, which not only require large storage capacities, but also high stabilities and superior electrical conductivities. In this work, the electronic structures, stabilities, and the Li adsorption preferences of lithiated WS2 and NbSe2 monolayers as well as a lithiated WS2/NbSe2 heterostructure were systematically investigated using first principles calculations. It was found that compared with the metallic NbSe2 monolayer, the WS2/NbSe2 heterostructure appears to have a new state occupation where there was no state occupation in the sole NbSe2 monolayer. The metallic character ensures good electrical conductivity for lithium-ion batteries. Additionally, the diffusion barrier of the WS2/NbSe2 heterostructure is lower than that of WS2 and NbSe2 monolayers. A lower diffusion barrier guarantees better charge and discharge performances of the WS2/NbSe2 heterostructure as a battery electrode. Most importantly, the heterostructure was predicted to have quite a high theoretical specific capacity. Our results manifest that the WS2/NbSe2 heterostructure is a promising anode material, and provide valuable insights into the exploration of a rich variety of two dimensional heterostructure materials for next-generation flexible energy storage and conversion devices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8ta05531a</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (35), p.17040-17048
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2102357480
source Royal Society Of Chemistry Journals 2008-
subjects Anodes
Batteries
Diffusion barriers
Electrical conductivity
Electrical resistivity
Electrode materials
Energy storage
First principles
Heterostructures
Lithium
Lithium-ion batteries
Monolayers
Occupations
Rechargeable batteries
Specific capacity
Storage batteries
title A novel WS2/NbSe2 vdW heterostructure as an ultrafast charging and discharging anode material for lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20WS2/NbSe2%20vdW%20heterostructure%20as%20an%20ultrafast%20charging%20and%20discharging%20anode%20material%20for%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Liu,%20Huating&rft.date=2018&rft.volume=6&rft.issue=35&rft.spage=17040&rft.epage=17048&rft.pages=17040-17048&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c8ta05531a&rft_dat=%3Cproquest%3E2102357480%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2102357480&rft_id=info:pmid/&rfr_iscdi=true