Trajectory optimization of a multi-tethered space robot on large spinning net structures

Purpose The purpose of this paper is to investigate the time optimal trajectory of the multi-tethered robot (MTR) on a large spinning net structures in microgravity environment. Design/methodology/approach The MTR is a small space robot that uses several tethers attached to the corner-fixed satellit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aircraft engineering 2018-09, Vol.90 (5), p.727-733
Hauptverfasser: Saisutjarit, Phongsatorn, Inamori, Takaya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 733
container_issue 5
container_start_page 727
container_title Aircraft engineering
container_volume 90
creator Saisutjarit, Phongsatorn
Inamori, Takaya
description Purpose The purpose of this paper is to investigate the time optimal trajectory of the multi-tethered robot (MTR) on a large spinning net structures in microgravity environment. Design/methodology/approach The MTR is a small space robot that uses several tethers attached to the corner-fixed satellites of a spinning net platform. The transition of the MTR from a start point to any arbitrary designated points on the platform surface can be achieved by controlling the tethers’ length and tension simultaneously. Numerical analysis of trajectory optimization problem for the MTR is implemented using the pseudospectral (PS) method. Findings The globally time optimal trajectory for MTR on a free-end spinning net platform can be obtained through the PS method. Research limitations/implications The analysis in this paper is limited to a planar trajectory and the effects caused by attitude of the MTR will be neglected. To make the problem simple and to see the feasibility in the general case, in this paper, it is assumed there are no any limitations of mechanical hardware constraints such as the velocity limitation of the robot and tether length changing constraint, while only geometrical constraints are considered. Practical implications The optimal solution derived from numerical analysis can be used for a path planning, guidance and navigation control. This method can be used for more efficient on-orbit autonomous self-assembly system or extravehicular activities supports which using a tether-controlled robot. Originality/value This approach for a locomotion mechanism has the capability to solve problems of conventional crawling type robots on a loose net in microgravity.
doi_str_mv 10.1108/AEAT-05-2015-0141
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2102339352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2102339352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-baf4332e30590ceea0f702ac36e6f8c43083524d1639f6c7fe130cdf633e95d43</originalsourceid><addsrcrecordid>eNptkE1LxDAQhosouK7-AG8Bz9FJJu22x2VZP0DwsoK3kE0na5e2WZP0sP56W9aL4GlehveZgSfLbgXcCwHlw3K93HDIuQSRcxBKnGUzschLrqTA8ymrkpelkpfZVYx7AFHkgLPsYxPMnmzy4cj8ITVd821S43vmHTOsG9rU8ETpkwLVLB6MJRb81ic2VloTdjQum75v-h3rKbGYwmDTECheZxfOtJFufuc8e39cb1bP_PXt6WW1fOUWS5X41jiFKAkhr8ASGXALkMZiQYUrrUIoMZeqFgVWrrALRwLB1q5ApCqvFc6zu9PdQ_BfA8Wk934I_fhSSwESsRr5sSVOLRt8jIGcPoSmM-GoBehJoJ4Easj1JFBPAkcGTgx1FExb_4v8cY4_GdVygw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102339352</pqid></control><display><type>article</type><title>Trajectory optimization of a multi-tethered space robot on large spinning net structures</title><source>Emerald A-Z Current Journals</source><creator>Saisutjarit, Phongsatorn ; Inamori, Takaya</creator><creatorcontrib>Saisutjarit, Phongsatorn ; Inamori, Takaya</creatorcontrib><description>Purpose The purpose of this paper is to investigate the time optimal trajectory of the multi-tethered robot (MTR) on a large spinning net structures in microgravity environment. Design/methodology/approach The MTR is a small space robot that uses several tethers attached to the corner-fixed satellites of a spinning net platform. The transition of the MTR from a start point to any arbitrary designated points on the platform surface can be achieved by controlling the tethers’ length and tension simultaneously. Numerical analysis of trajectory optimization problem for the MTR is implemented using the pseudospectral (PS) method. Findings The globally time optimal trajectory for MTR on a free-end spinning net platform can be obtained through the PS method. Research limitations/implications The analysis in this paper is limited to a planar trajectory and the effects caused by attitude of the MTR will be neglected. To make the problem simple and to see the feasibility in the general case, in this paper, it is assumed there are no any limitations of mechanical hardware constraints such as the velocity limitation of the robot and tether length changing constraint, while only geometrical constraints are considered. Practical implications The optimal solution derived from numerical analysis can be used for a path planning, guidance and navigation control. This method can be used for more efficient on-orbit autonomous self-assembly system or extravehicular activities supports which using a tether-controlled robot. Originality/value This approach for a locomotion mechanism has the capability to solve problems of conventional crawling type robots on a loose net in microgravity.</description><identifier>ISSN: 1748-8842</identifier><identifier>EISSN: 1758-4213</identifier><identifier>DOI: 10.1108/AEAT-05-2015-0141</identifier><language>eng</language><publisher>Bradford: Emerald Publishing Limited</publisher><subject>Boundary conditions ; Equilibrium ; Extravehicular activity ; Locomotion ; Microgravity ; Numerical analysis ; Optimization ; Robots ; Satellites ; Self-assembly ; Space robots ; Tethers ; Trajectory analysis ; Trajectory optimization ; Trajectory planning ; Velocity</subject><ispartof>Aircraft engineering, 2018-09, Vol.90 (5), p.727-733</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-baf4332e30590ceea0f702ac36e6f8c43083524d1639f6c7fe130cdf633e95d43</citedby><cites>FETCH-LOGICAL-c384t-baf4332e30590ceea0f702ac36e6f8c43083524d1639f6c7fe130cdf633e95d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,962,27905,27906</link.rule.ids></links><search><creatorcontrib>Saisutjarit, Phongsatorn</creatorcontrib><creatorcontrib>Inamori, Takaya</creatorcontrib><title>Trajectory optimization of a multi-tethered space robot on large spinning net structures</title><title>Aircraft engineering</title><description>Purpose The purpose of this paper is to investigate the time optimal trajectory of the multi-tethered robot (MTR) on a large spinning net structures in microgravity environment. Design/methodology/approach The MTR is a small space robot that uses several tethers attached to the corner-fixed satellites of a spinning net platform. The transition of the MTR from a start point to any arbitrary designated points on the platform surface can be achieved by controlling the tethers’ length and tension simultaneously. Numerical analysis of trajectory optimization problem for the MTR is implemented using the pseudospectral (PS) method. Findings The globally time optimal trajectory for MTR on a free-end spinning net platform can be obtained through the PS method. Research limitations/implications The analysis in this paper is limited to a planar trajectory and the effects caused by attitude of the MTR will be neglected. To make the problem simple and to see the feasibility in the general case, in this paper, it is assumed there are no any limitations of mechanical hardware constraints such as the velocity limitation of the robot and tether length changing constraint, while only geometrical constraints are considered. Practical implications The optimal solution derived from numerical analysis can be used for a path planning, guidance and navigation control. This method can be used for more efficient on-orbit autonomous self-assembly system or extravehicular activities supports which using a tether-controlled robot. Originality/value This approach for a locomotion mechanism has the capability to solve problems of conventional crawling type robots on a loose net in microgravity.</description><subject>Boundary conditions</subject><subject>Equilibrium</subject><subject>Extravehicular activity</subject><subject>Locomotion</subject><subject>Microgravity</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Robots</subject><subject>Satellites</subject><subject>Self-assembly</subject><subject>Space robots</subject><subject>Tethers</subject><subject>Trajectory analysis</subject><subject>Trajectory optimization</subject><subject>Trajectory planning</subject><subject>Velocity</subject><issn>1748-8842</issn><issn>1758-4213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkE1LxDAQhosouK7-AG8Bz9FJJu22x2VZP0DwsoK3kE0na5e2WZP0sP56W9aL4GlehveZgSfLbgXcCwHlw3K93HDIuQSRcxBKnGUzschLrqTA8ymrkpelkpfZVYx7AFHkgLPsYxPMnmzy4cj8ITVd821S43vmHTOsG9rU8ETpkwLVLB6MJRb81ic2VloTdjQum75v-h3rKbGYwmDTECheZxfOtJFufuc8e39cb1bP_PXt6WW1fOUWS5X41jiFKAkhr8ASGXALkMZiQYUrrUIoMZeqFgVWrrALRwLB1q5ApCqvFc6zu9PdQ_BfA8Wk934I_fhSSwESsRr5sSVOLRt8jIGcPoSmM-GoBehJoJ4Easj1JFBPAkcGTgx1FExb_4v8cY4_GdVygw</recordid><startdate>20180912</startdate><enddate>20180912</enddate><creator>Saisutjarit, Phongsatorn</creator><creator>Inamori, Takaya</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7RQ</scope><scope>7TB</scope><scope>7WY</scope><scope>7XB</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0F</scope><scope>M1Q</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20180912</creationdate><title>Trajectory optimization of a multi-tethered space robot on large spinning net structures</title><author>Saisutjarit, Phongsatorn ; Inamori, Takaya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-baf4332e30590ceea0f702ac36e6f8c43083524d1639f6c7fe130cdf633e95d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary conditions</topic><topic>Equilibrium</topic><topic>Extravehicular activity</topic><topic>Locomotion</topic><topic>Microgravity</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Robots</topic><topic>Satellites</topic><topic>Self-assembly</topic><topic>Space robots</topic><topic>Tethers</topic><topic>Trajectory analysis</topic><topic>Trajectory optimization</topic><topic>Trajectory planning</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saisutjarit, Phongsatorn</creatorcontrib><creatorcontrib>Inamori, Takaya</creatorcontrib><collection>CrossRef</collection><collection>Career &amp; Technical Education Database</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Aircraft engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saisutjarit, Phongsatorn</au><au>Inamori, Takaya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory optimization of a multi-tethered space robot on large spinning net structures</atitle><jtitle>Aircraft engineering</jtitle><date>2018-09-12</date><risdate>2018</risdate><volume>90</volume><issue>5</issue><spage>727</spage><epage>733</epage><pages>727-733</pages><issn>1748-8842</issn><eissn>1758-4213</eissn><abstract>Purpose The purpose of this paper is to investigate the time optimal trajectory of the multi-tethered robot (MTR) on a large spinning net structures in microgravity environment. Design/methodology/approach The MTR is a small space robot that uses several tethers attached to the corner-fixed satellites of a spinning net platform. The transition of the MTR from a start point to any arbitrary designated points on the platform surface can be achieved by controlling the tethers’ length and tension simultaneously. Numerical analysis of trajectory optimization problem for the MTR is implemented using the pseudospectral (PS) method. Findings The globally time optimal trajectory for MTR on a free-end spinning net platform can be obtained through the PS method. Research limitations/implications The analysis in this paper is limited to a planar trajectory and the effects caused by attitude of the MTR will be neglected. To make the problem simple and to see the feasibility in the general case, in this paper, it is assumed there are no any limitations of mechanical hardware constraints such as the velocity limitation of the robot and tether length changing constraint, while only geometrical constraints are considered. Practical implications The optimal solution derived from numerical analysis can be used for a path planning, guidance and navigation control. This method can be used for more efficient on-orbit autonomous self-assembly system or extravehicular activities supports which using a tether-controlled robot. Originality/value This approach for a locomotion mechanism has the capability to solve problems of conventional crawling type robots on a loose net in microgravity.</abstract><cop>Bradford</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/AEAT-05-2015-0141</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-8842
ispartof Aircraft engineering, 2018-09, Vol.90 (5), p.727-733
issn 1748-8842
1758-4213
language eng
recordid cdi_proquest_journals_2102339352
source Emerald A-Z Current Journals
subjects Boundary conditions
Equilibrium
Extravehicular activity
Locomotion
Microgravity
Numerical analysis
Optimization
Robots
Satellites
Self-assembly
Space robots
Tethers
Trajectory analysis
Trajectory optimization
Trajectory planning
Velocity
title Trajectory optimization of a multi-tethered space robot on large spinning net structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory%20optimization%20of%20a%20multi-tethered%20space%20robot%20on%20large%20spinning%20net%20structures&rft.jtitle=Aircraft%20engineering&rft.au=Saisutjarit,%20Phongsatorn&rft.date=2018-09-12&rft.volume=90&rft.issue=5&rft.spage=727&rft.epage=733&rft.pages=727-733&rft.issn=1748-8842&rft.eissn=1758-4213&rft_id=info:doi/10.1108/AEAT-05-2015-0141&rft_dat=%3Cproquest_cross%3E2102339352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2102339352&rft_id=info:pmid/&rfr_iscdi=true