Electronic Properties of Strained Double‐Weyl Systems
The effects of strains on the low‐energy electronic properties of double‐Weyl phases are studied in solids and cold‐atom optical lattices. The principal finding is that deformations do not couple, in general, to the low‐energy effective Hamiltonian as a pseudoelectromagnetic gauge potential. The res...
Gespeichert in:
Veröffentlicht in: | Annalen der Physik 2018-09, Vol.530 (9), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Annalen der Physik |
container_volume | 530 |
creator | Sukhachov, Pavlo O. Gorbar, Eduard V. Shovkovy, Igor A. Miransky, Vladimir A. |
description | The effects of strains on the low‐energy electronic properties of double‐Weyl phases are studied in solids and cold‐atom optical lattices. The principal finding is that deformations do not couple, in general, to the low‐energy effective Hamiltonian as a pseudoelectromagnetic gauge potential. The response of an optical lattice to strains is simpler, but still only one of the several strain‐induced terms in the corresponding low‐energy Hamiltonian can be interpreted as a gauge potential. Most interestingly, the strains can induce a nematic order parameter that splits a double‐Weyl node into a pair of Weyl nodes with the unit topological charges. The effects of deformations on the motion of wavepackets in the double‐Weyl optical lattice model are studied. It is found that, even in the undeformed lattices, the wavepackets with opposite topological charges can be spatially split. Strains, however, modify their velocities in a very different way and lead to a spin polarization of the wavepackets.
The effects of strains on the electronic properties of double‐Weyl phases are studied in solids and cold‐atom optical lattices. In the effective Hamiltonian, strains are represented by several types of fields. One of them is a nematic order parameter. In addition, the velocities and spin polarizations of the wavepackes from different Weyl nodes are modified. |
doi_str_mv | 10.1002/andp.201800219 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2102223238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2102223238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-f7e7bc445aa75839ddc7cdbe0a944991f620b1491b0460b9d86d06f3b7b9f3523</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRsNRuXQdcp565JJNZlrZaoWihisthrpCSJnEmRbLzEXxGn8SUii5dnfPD950DP0LXGKYYgNyq2rZTArgYAhZnaIQzglNaFOIcjQCADjuwSzSJcTdEyIAAYSPEl5UzXWjq0iSb0LQudKWLSeOTbRdUWTubLJqDrtzXx-er66tk28fO7eMVuvCqim7yM8fo5W75PF-l66f7h_lsnRqKuUg9d1wbxjKleFZQYa3hxmoHSjAmBPY5AY2ZwBpYDlrYIreQe6q5Fp5mhI7RzeluG5q3g4ud3DWHUA8vJcFACKGEFgM1PVEmNDEG52Ubyr0KvcQgj_3IYz_yt59BECfhvaxc_w8tZ4-LzZ_7DZTHaRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102223238</pqid></control><display><type>article</type><title>Electronic Properties of Strained Double‐Weyl Systems</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Sukhachov, Pavlo O. ; Gorbar, Eduard V. ; Shovkovy, Igor A. ; Miransky, Vladimir A.</creator><creatorcontrib>Sukhachov, Pavlo O. ; Gorbar, Eduard V. ; Shovkovy, Igor A. ; Miransky, Vladimir A.</creatorcontrib><description>The effects of strains on the low‐energy electronic properties of double‐Weyl phases are studied in solids and cold‐atom optical lattices. The principal finding is that deformations do not couple, in general, to the low‐energy effective Hamiltonian as a pseudoelectromagnetic gauge potential. The response of an optical lattice to strains is simpler, but still only one of the several strain‐induced terms in the corresponding low‐energy Hamiltonian can be interpreted as a gauge potential. Most interestingly, the strains can induce a nematic order parameter that splits a double‐Weyl node into a pair of Weyl nodes with the unit topological charges. The effects of deformations on the motion of wavepackets in the double‐Weyl optical lattice model are studied. It is found that, even in the undeformed lattices, the wavepackets with opposite topological charges can be spatially split. Strains, however, modify their velocities in a very different way and lead to a spin polarization of the wavepackets.
The effects of strains on the electronic properties of double‐Weyl phases are studied in solids and cold‐atom optical lattices. In the effective Hamiltonian, strains are represented by several types of fields. One of them is a nematic order parameter. In addition, the velocities and spin polarizations of the wavepackes from different Weyl nodes are modified.</description><identifier>ISSN: 0003-3804</identifier><identifier>EISSN: 1521-3889</identifier><identifier>DOI: 10.1002/andp.201800219</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Deformation effects ; double‐Weyl semimetals ; electronic properties ; Optical lattices ; Order parameters ; Polarization (spin alignment) ; strains ; wavepackets</subject><ispartof>Annalen der Physik, 2018-09, Vol.530 (9), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-f7e7bc445aa75839ddc7cdbe0a944991f620b1491b0460b9d86d06f3b7b9f3523</citedby><cites>FETCH-LOGICAL-c3179-f7e7bc445aa75839ddc7cdbe0a944991f620b1491b0460b9d86d06f3b7b9f3523</cites><orcidid>0000-0002-5230-6891 ; 0000-0002-8524-2193 ; 0000-0002-2684-1276 ; 0000-0003-2280-8249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fandp.201800219$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fandp.201800219$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Sukhachov, Pavlo O.</creatorcontrib><creatorcontrib>Gorbar, Eduard V.</creatorcontrib><creatorcontrib>Shovkovy, Igor A.</creatorcontrib><creatorcontrib>Miransky, Vladimir A.</creatorcontrib><title>Electronic Properties of Strained Double‐Weyl Systems</title><title>Annalen der Physik</title><description>The effects of strains on the low‐energy electronic properties of double‐Weyl phases are studied in solids and cold‐atom optical lattices. The principal finding is that deformations do not couple, in general, to the low‐energy effective Hamiltonian as a pseudoelectromagnetic gauge potential. The response of an optical lattice to strains is simpler, but still only one of the several strain‐induced terms in the corresponding low‐energy Hamiltonian can be interpreted as a gauge potential. Most interestingly, the strains can induce a nematic order parameter that splits a double‐Weyl node into a pair of Weyl nodes with the unit topological charges. The effects of deformations on the motion of wavepackets in the double‐Weyl optical lattice model are studied. It is found that, even in the undeformed lattices, the wavepackets with opposite topological charges can be spatially split. Strains, however, modify their velocities in a very different way and lead to a spin polarization of the wavepackets.
The effects of strains on the electronic properties of double‐Weyl phases are studied in solids and cold‐atom optical lattices. In the effective Hamiltonian, strains are represented by several types of fields. One of them is a nematic order parameter. In addition, the velocities and spin polarizations of the wavepackes from different Weyl nodes are modified.</description><subject>Deformation effects</subject><subject>double‐Weyl semimetals</subject><subject>electronic properties</subject><subject>Optical lattices</subject><subject>Order parameters</subject><subject>Polarization (spin alignment)</subject><subject>strains</subject><subject>wavepackets</subject><issn>0003-3804</issn><issn>1521-3889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKw0AUhgdRsNRuXQdcp565JJNZlrZaoWihisthrpCSJnEmRbLzEXxGn8SUii5dnfPD950DP0LXGKYYgNyq2rZTArgYAhZnaIQzglNaFOIcjQCADjuwSzSJcTdEyIAAYSPEl5UzXWjq0iSb0LQudKWLSeOTbRdUWTubLJqDrtzXx-er66tk28fO7eMVuvCqim7yM8fo5W75PF-l66f7h_lsnRqKuUg9d1wbxjKleFZQYa3hxmoHSjAmBPY5AY2ZwBpYDlrYIreQe6q5Fp5mhI7RzeluG5q3g4ud3DWHUA8vJcFACKGEFgM1PVEmNDEG52Ubyr0KvcQgj_3IYz_yt59BECfhvaxc_w8tZ4-LzZ_7DZTHaRo</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Sukhachov, Pavlo O.</creator><creator>Gorbar, Eduard V.</creator><creator>Shovkovy, Igor A.</creator><creator>Miransky, Vladimir A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5230-6891</orcidid><orcidid>https://orcid.org/0000-0002-8524-2193</orcidid><orcidid>https://orcid.org/0000-0002-2684-1276</orcidid><orcidid>https://orcid.org/0000-0003-2280-8249</orcidid></search><sort><creationdate>201809</creationdate><title>Electronic Properties of Strained Double‐Weyl Systems</title><author>Sukhachov, Pavlo O. ; Gorbar, Eduard V. ; Shovkovy, Igor A. ; Miransky, Vladimir A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-f7e7bc445aa75839ddc7cdbe0a944991f620b1491b0460b9d86d06f3b7b9f3523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Deformation effects</topic><topic>double‐Weyl semimetals</topic><topic>electronic properties</topic><topic>Optical lattices</topic><topic>Order parameters</topic><topic>Polarization (spin alignment)</topic><topic>strains</topic><topic>wavepackets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sukhachov, Pavlo O.</creatorcontrib><creatorcontrib>Gorbar, Eduard V.</creatorcontrib><creatorcontrib>Shovkovy, Igor A.</creatorcontrib><creatorcontrib>Miransky, Vladimir A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annalen der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sukhachov, Pavlo O.</au><au>Gorbar, Eduard V.</au><au>Shovkovy, Igor A.</au><au>Miransky, Vladimir A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Properties of Strained Double‐Weyl Systems</atitle><jtitle>Annalen der Physik</jtitle><date>2018-09</date><risdate>2018</risdate><volume>530</volume><issue>9</issue><epage>n/a</epage><issn>0003-3804</issn><eissn>1521-3889</eissn><abstract>The effects of strains on the low‐energy electronic properties of double‐Weyl phases are studied in solids and cold‐atom optical lattices. The principal finding is that deformations do not couple, in general, to the low‐energy effective Hamiltonian as a pseudoelectromagnetic gauge potential. The response of an optical lattice to strains is simpler, but still only one of the several strain‐induced terms in the corresponding low‐energy Hamiltonian can be interpreted as a gauge potential. Most interestingly, the strains can induce a nematic order parameter that splits a double‐Weyl node into a pair of Weyl nodes with the unit topological charges. The effects of deformations on the motion of wavepackets in the double‐Weyl optical lattice model are studied. It is found that, even in the undeformed lattices, the wavepackets with opposite topological charges can be spatially split. Strains, however, modify their velocities in a very different way and lead to a spin polarization of the wavepackets.
The effects of strains on the electronic properties of double‐Weyl phases are studied in solids and cold‐atom optical lattices. In the effective Hamiltonian, strains are represented by several types of fields. One of them is a nematic order parameter. In addition, the velocities and spin polarizations of the wavepackes from different Weyl nodes are modified.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/andp.201800219</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5230-6891</orcidid><orcidid>https://orcid.org/0000-0002-8524-2193</orcidid><orcidid>https://orcid.org/0000-0002-2684-1276</orcidid><orcidid>https://orcid.org/0000-0003-2280-8249</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-3804 |
ispartof | Annalen der Physik, 2018-09, Vol.530 (9), p.n/a |
issn | 0003-3804 1521-3889 |
language | eng |
recordid | cdi_proquest_journals_2102223238 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Deformation effects double‐Weyl semimetals electronic properties Optical lattices Order parameters Polarization (spin alignment) strains wavepackets |
title | Electronic Properties of Strained Double‐Weyl Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Properties%20of%20Strained%20Double%E2%80%90Weyl%20Systems&rft.jtitle=Annalen%20der%20Physik&rft.au=Sukhachov,%20Pavlo%20O.&rft.date=2018-09&rft.volume=530&rft.issue=9&rft.epage=n/a&rft.issn=0003-3804&rft.eissn=1521-3889&rft_id=info:doi/10.1002/andp.201800219&rft_dat=%3Cproquest_cross%3E2102223238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2102223238&rft_id=info:pmid/&rfr_iscdi=true |