Electronic Properties of Strained Double‐Weyl Systems

The effects of strains on the low‐energy electronic properties of double‐Weyl phases are studied in solids and cold‐atom optical lattices. The principal finding is that deformations do not couple, in general, to the low‐energy effective Hamiltonian as a pseudoelectromagnetic gauge potential. The res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annalen der Physik 2018-09, Vol.530 (9), p.n/a
Hauptverfasser: Sukhachov, Pavlo O., Gorbar, Eduard V., Shovkovy, Igor A., Miransky, Vladimir A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Annalen der Physik
container_volume 530
creator Sukhachov, Pavlo O.
Gorbar, Eduard V.
Shovkovy, Igor A.
Miransky, Vladimir A.
description The effects of strains on the low‐energy electronic properties of double‐Weyl phases are studied in solids and cold‐atom optical lattices. The principal finding is that deformations do not couple, in general, to the low‐energy effective Hamiltonian as a pseudoelectromagnetic gauge potential. The response of an optical lattice to strains is simpler, but still only one of the several strain‐induced terms in the corresponding low‐energy Hamiltonian can be interpreted as a gauge potential. Most interestingly, the strains can induce a nematic order parameter that splits a double‐Weyl node into a pair of Weyl nodes with the unit topological charges. The effects of deformations on the motion of wavepackets in the double‐Weyl optical lattice model are studied. It is found that, even in the undeformed lattices, the wavepackets with opposite topological charges can be spatially split. Strains, however, modify their velocities in a very different way and lead to a spin polarization of the wavepackets. The effects of strains on the electronic properties of double‐Weyl phases are studied in solids and cold‐atom optical lattices. In the effective Hamiltonian, strains are represented by several types of fields. One of them is a nematic order parameter. In addition, the velocities and spin polarizations of the wavepackes from different Weyl nodes are modified.
doi_str_mv 10.1002/andp.201800219
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2102223238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2102223238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-f7e7bc445aa75839ddc7cdbe0a944991f620b1491b0460b9d86d06f3b7b9f3523</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRsNRuXQdcp565JJNZlrZaoWihisthrpCSJnEmRbLzEXxGn8SUii5dnfPD950DP0LXGKYYgNyq2rZTArgYAhZnaIQzglNaFOIcjQCADjuwSzSJcTdEyIAAYSPEl5UzXWjq0iSb0LQudKWLSeOTbRdUWTubLJqDrtzXx-er66tk28fO7eMVuvCqim7yM8fo5W75PF-l66f7h_lsnRqKuUg9d1wbxjKleFZQYa3hxmoHSjAmBPY5AY2ZwBpYDlrYIreQe6q5Fp5mhI7RzeluG5q3g4ud3DWHUA8vJcFACKGEFgM1PVEmNDEG52Ubyr0KvcQgj_3IYz_yt59BECfhvaxc_w8tZ4-LzZ_7DZTHaRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102223238</pqid></control><display><type>article</type><title>Electronic Properties of Strained Double‐Weyl Systems</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Sukhachov, Pavlo O. ; Gorbar, Eduard V. ; Shovkovy, Igor A. ; Miransky, Vladimir A.</creator><creatorcontrib>Sukhachov, Pavlo O. ; Gorbar, Eduard V. ; Shovkovy, Igor A. ; Miransky, Vladimir A.</creatorcontrib><description>The effects of strains on the low‐energy electronic properties of double‐Weyl phases are studied in solids and cold‐atom optical lattices. The principal finding is that deformations do not couple, in general, to the low‐energy effective Hamiltonian as a pseudoelectromagnetic gauge potential. The response of an optical lattice to strains is simpler, but still only one of the several strain‐induced terms in the corresponding low‐energy Hamiltonian can be interpreted as a gauge potential. Most interestingly, the strains can induce a nematic order parameter that splits a double‐Weyl node into a pair of Weyl nodes with the unit topological charges. The effects of deformations on the motion of wavepackets in the double‐Weyl optical lattice model are studied. It is found that, even in the undeformed lattices, the wavepackets with opposite topological charges can be spatially split. Strains, however, modify their velocities in a very different way and lead to a spin polarization of the wavepackets. The effects of strains on the electronic properties of double‐Weyl phases are studied in solids and cold‐atom optical lattices. In the effective Hamiltonian, strains are represented by several types of fields. One of them is a nematic order parameter. In addition, the velocities and spin polarizations of the wavepackes from different Weyl nodes are modified.</description><identifier>ISSN: 0003-3804</identifier><identifier>EISSN: 1521-3889</identifier><identifier>DOI: 10.1002/andp.201800219</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Deformation effects ; double‐Weyl semimetals ; electronic properties ; Optical lattices ; Order parameters ; Polarization (spin alignment) ; strains ; wavepackets</subject><ispartof>Annalen der Physik, 2018-09, Vol.530 (9), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-f7e7bc445aa75839ddc7cdbe0a944991f620b1491b0460b9d86d06f3b7b9f3523</citedby><cites>FETCH-LOGICAL-c3179-f7e7bc445aa75839ddc7cdbe0a944991f620b1491b0460b9d86d06f3b7b9f3523</cites><orcidid>0000-0002-5230-6891 ; 0000-0002-8524-2193 ; 0000-0002-2684-1276 ; 0000-0003-2280-8249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fandp.201800219$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fandp.201800219$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Sukhachov, Pavlo O.</creatorcontrib><creatorcontrib>Gorbar, Eduard V.</creatorcontrib><creatorcontrib>Shovkovy, Igor A.</creatorcontrib><creatorcontrib>Miransky, Vladimir A.</creatorcontrib><title>Electronic Properties of Strained Double‐Weyl Systems</title><title>Annalen der Physik</title><description>The effects of strains on the low‐energy electronic properties of double‐Weyl phases are studied in solids and cold‐atom optical lattices. The principal finding is that deformations do not couple, in general, to the low‐energy effective Hamiltonian as a pseudoelectromagnetic gauge potential. The response of an optical lattice to strains is simpler, but still only one of the several strain‐induced terms in the corresponding low‐energy Hamiltonian can be interpreted as a gauge potential. Most interestingly, the strains can induce a nematic order parameter that splits a double‐Weyl node into a pair of Weyl nodes with the unit topological charges. The effects of deformations on the motion of wavepackets in the double‐Weyl optical lattice model are studied. It is found that, even in the undeformed lattices, the wavepackets with opposite topological charges can be spatially split. Strains, however, modify their velocities in a very different way and lead to a spin polarization of the wavepackets. The effects of strains on the electronic properties of double‐Weyl phases are studied in solids and cold‐atom optical lattices. In the effective Hamiltonian, strains are represented by several types of fields. One of them is a nematic order parameter. In addition, the velocities and spin polarizations of the wavepackes from different Weyl nodes are modified.</description><subject>Deformation effects</subject><subject>double‐Weyl semimetals</subject><subject>electronic properties</subject><subject>Optical lattices</subject><subject>Order parameters</subject><subject>Polarization (spin alignment)</subject><subject>strains</subject><subject>wavepackets</subject><issn>0003-3804</issn><issn>1521-3889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKw0AUhgdRsNRuXQdcp565JJNZlrZaoWihisthrpCSJnEmRbLzEXxGn8SUii5dnfPD950DP0LXGKYYgNyq2rZTArgYAhZnaIQzglNaFOIcjQCADjuwSzSJcTdEyIAAYSPEl5UzXWjq0iSb0LQudKWLSeOTbRdUWTubLJqDrtzXx-er66tk28fO7eMVuvCqim7yM8fo5W75PF-l66f7h_lsnRqKuUg9d1wbxjKleFZQYa3hxmoHSjAmBPY5AY2ZwBpYDlrYIreQe6q5Fp5mhI7RzeluG5q3g4ud3DWHUA8vJcFACKGEFgM1PVEmNDEG52Ubyr0KvcQgj_3IYz_yt59BECfhvaxc_w8tZ4-LzZ_7DZTHaRo</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Sukhachov, Pavlo O.</creator><creator>Gorbar, Eduard V.</creator><creator>Shovkovy, Igor A.</creator><creator>Miransky, Vladimir A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5230-6891</orcidid><orcidid>https://orcid.org/0000-0002-8524-2193</orcidid><orcidid>https://orcid.org/0000-0002-2684-1276</orcidid><orcidid>https://orcid.org/0000-0003-2280-8249</orcidid></search><sort><creationdate>201809</creationdate><title>Electronic Properties of Strained Double‐Weyl Systems</title><author>Sukhachov, Pavlo O. ; Gorbar, Eduard V. ; Shovkovy, Igor A. ; Miransky, Vladimir A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-f7e7bc445aa75839ddc7cdbe0a944991f620b1491b0460b9d86d06f3b7b9f3523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Deformation effects</topic><topic>double‐Weyl semimetals</topic><topic>electronic properties</topic><topic>Optical lattices</topic><topic>Order parameters</topic><topic>Polarization (spin alignment)</topic><topic>strains</topic><topic>wavepackets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sukhachov, Pavlo O.</creatorcontrib><creatorcontrib>Gorbar, Eduard V.</creatorcontrib><creatorcontrib>Shovkovy, Igor A.</creatorcontrib><creatorcontrib>Miransky, Vladimir A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annalen der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sukhachov, Pavlo O.</au><au>Gorbar, Eduard V.</au><au>Shovkovy, Igor A.</au><au>Miransky, Vladimir A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Properties of Strained Double‐Weyl Systems</atitle><jtitle>Annalen der Physik</jtitle><date>2018-09</date><risdate>2018</risdate><volume>530</volume><issue>9</issue><epage>n/a</epage><issn>0003-3804</issn><eissn>1521-3889</eissn><abstract>The effects of strains on the low‐energy electronic properties of double‐Weyl phases are studied in solids and cold‐atom optical lattices. The principal finding is that deformations do not couple, in general, to the low‐energy effective Hamiltonian as a pseudoelectromagnetic gauge potential. The response of an optical lattice to strains is simpler, but still only one of the several strain‐induced terms in the corresponding low‐energy Hamiltonian can be interpreted as a gauge potential. Most interestingly, the strains can induce a nematic order parameter that splits a double‐Weyl node into a pair of Weyl nodes with the unit topological charges. The effects of deformations on the motion of wavepackets in the double‐Weyl optical lattice model are studied. It is found that, even in the undeformed lattices, the wavepackets with opposite topological charges can be spatially split. Strains, however, modify their velocities in a very different way and lead to a spin polarization of the wavepackets. The effects of strains on the electronic properties of double‐Weyl phases are studied in solids and cold‐atom optical lattices. In the effective Hamiltonian, strains are represented by several types of fields. One of them is a nematic order parameter. In addition, the velocities and spin polarizations of the wavepackes from different Weyl nodes are modified.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/andp.201800219</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5230-6891</orcidid><orcidid>https://orcid.org/0000-0002-8524-2193</orcidid><orcidid>https://orcid.org/0000-0002-2684-1276</orcidid><orcidid>https://orcid.org/0000-0003-2280-8249</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-3804
ispartof Annalen der Physik, 2018-09, Vol.530 (9), p.n/a
issn 0003-3804
1521-3889
language eng
recordid cdi_proquest_journals_2102223238
source Wiley Online Library - AutoHoldings Journals
subjects Deformation effects
double‐Weyl semimetals
electronic properties
Optical lattices
Order parameters
Polarization (spin alignment)
strains
wavepackets
title Electronic Properties of Strained Double‐Weyl Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Properties%20of%20Strained%20Double%E2%80%90Weyl%20Systems&rft.jtitle=Annalen%20der%20Physik&rft.au=Sukhachov,%20Pavlo%20O.&rft.date=2018-09&rft.volume=530&rft.issue=9&rft.epage=n/a&rft.issn=0003-3804&rft.eissn=1521-3889&rft_id=info:doi/10.1002/andp.201800219&rft_dat=%3Cproquest_cross%3E2102223238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2102223238&rft_id=info:pmid/&rfr_iscdi=true