A Continuous Differentiable Wavelet Shrinkage Function for Economic Data Denoising

In economic (financial) time series analysis, prediction plays an important role and the inclusion of noise in the time series data is also a common phenomenon. In particular, stock market data are highly random and non-stationary, thus they contain much noise. Prediction of the noise-free data is q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational economics 2019-08, Vol.54 (2), p.729-761
Hauptverfasser: He, Fan, He, Xuansen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 761
container_issue 2
container_start_page 729
container_title Computational economics
container_volume 54
creator He, Fan
He, Xuansen
description In economic (financial) time series analysis, prediction plays an important role and the inclusion of noise in the time series data is also a common phenomenon. In particular, stock market data are highly random and non-stationary, thus they contain much noise. Prediction of the noise-free data is quite difficult when noise is present. Therefore, removal of such noise before predicting can significantly improve the prediction accuracy of economic models. Based on this consideration, this paper proposes a new shrinkage (thresholding) function to improve the performance of wavelet shrinkage denoising. The proposed thresholding function is an arctangent function with several parameters to be determined and the optimal parameters are determined by ensuring that the thresholding function satisfies the condition of continuously differentiable. The closing price data with the Shanghai Composite Index from January 1991 to December 2014 are used to illustrate the application of the proposed shrinkage function in denoising the stock data. The experimental results show that compared with the classical shrinkage (hard, soft, and nonnegative garrote) functions, the proposed thresholding function not only has the advantage of continuous derivative, but also has a very competitive denoising performance.
doi_str_mv 10.1007/s10614-018-9849-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2102163731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2102163731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-7c1e46cae5260d8e9ccdbc3184fbec45eaeff49bd657b4ed15cdc5444a4f53953</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9WiSSSaTZelDhYLgA5chk7mpqW1Skxmh_94pFVy5uhw437nwIXRNyS0lRN5lSirKC0LrQtVcFfsTNKJCskIpyU_RiCgmC0mUOkcXOa8JIYIyNkLPEzyNofOhj33GM-8cJBiyaTaA3803bKDDLx_Jh0-zArzog-18DNjFhOc2hrj1Fs9MZ_AMQvTZh9UlOnNmk-Hq947R22L-On0olk_3j9PJsrBlTbtCWgq8sgYEq0hbg7K2bWxJa-4asFyAAee4atpKyIZDS4VtreCcG-5EqUQ5RjfH3V2KXz3kTq9jn8LwUjNKGK1KWdKhRY8tm2LOCZzeJb81aa8p0Qd1-qhOD-r0QZ3eDww7MnnohhWkv-X_oR80u3MX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102163731</pqid></control><display><type>article</type><title>A Continuous Differentiable Wavelet Shrinkage Function for Economic Data Denoising</title><source>SpringerNature Journals</source><creator>He, Fan ; He, Xuansen</creator><creatorcontrib>He, Fan ; He, Xuansen</creatorcontrib><description>In economic (financial) time series analysis, prediction plays an important role and the inclusion of noise in the time series data is also a common phenomenon. In particular, stock market data are highly random and non-stationary, thus they contain much noise. Prediction of the noise-free data is quite difficult when noise is present. Therefore, removal of such noise before predicting can significantly improve the prediction accuracy of economic models. Based on this consideration, this paper proposes a new shrinkage (thresholding) function to improve the performance of wavelet shrinkage denoising. The proposed thresholding function is an arctangent function with several parameters to be determined and the optimal parameters are determined by ensuring that the thresholding function satisfies the condition of continuously differentiable. The closing price data with the Shanghai Composite Index from January 1991 to December 2014 are used to illustrate the application of the proposed shrinkage function in denoising the stock data. The experimental results show that compared with the classical shrinkage (hard, soft, and nonnegative garrote) functions, the proposed thresholding function not only has the advantage of continuous derivative, but also has a very competitive denoising performance.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-018-9849-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Behavioral/Experimental Economics ; Computer Appl. in Social and Behavioral Sciences ; Continuity (mathematics) ; Economic analysis ; Economic models ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Math Applications in Computer Science ; Model accuracy ; Noise ; Noise prediction ; Noise reduction ; Operations Research/Decision Theory ; Parameters ; Performance enhancement ; Securities markets ; Shrinkage ; Time series ; Wavelet analysis</subject><ispartof>Computational economics, 2019-08, Vol.54 (2), p.729-761</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Computational Economics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-7c1e46cae5260d8e9ccdbc3184fbec45eaeff49bd657b4ed15cdc5444a4f53953</citedby><cites>FETCH-LOGICAL-c381t-7c1e46cae5260d8e9ccdbc3184fbec45eaeff49bd657b4ed15cdc5444a4f53953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10614-018-9849-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10614-018-9849-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>He, Fan</creatorcontrib><creatorcontrib>He, Xuansen</creatorcontrib><title>A Continuous Differentiable Wavelet Shrinkage Function for Economic Data Denoising</title><title>Computational economics</title><addtitle>Comput Econ</addtitle><description>In economic (financial) time series analysis, prediction plays an important role and the inclusion of noise in the time series data is also a common phenomenon. In particular, stock market data are highly random and non-stationary, thus they contain much noise. Prediction of the noise-free data is quite difficult when noise is present. Therefore, removal of such noise before predicting can significantly improve the prediction accuracy of economic models. Based on this consideration, this paper proposes a new shrinkage (thresholding) function to improve the performance of wavelet shrinkage denoising. The proposed thresholding function is an arctangent function with several parameters to be determined and the optimal parameters are determined by ensuring that the thresholding function satisfies the condition of continuously differentiable. The closing price data with the Shanghai Composite Index from January 1991 to December 2014 are used to illustrate the application of the proposed shrinkage function in denoising the stock data. The experimental results show that compared with the classical shrinkage (hard, soft, and nonnegative garrote) functions, the proposed thresholding function not only has the advantage of continuous derivative, but also has a very competitive denoising performance.</description><subject>Behavioral/Experimental Economics</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Continuity (mathematics)</subject><subject>Economic analysis</subject><subject>Economic models</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Math Applications in Computer Science</subject><subject>Model accuracy</subject><subject>Noise</subject><subject>Noise prediction</subject><subject>Noise reduction</subject><subject>Operations Research/Decision Theory</subject><subject>Parameters</subject><subject>Performance enhancement</subject><subject>Securities markets</subject><subject>Shrinkage</subject><subject>Time series</subject><subject>Wavelet analysis</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9WiSSSaTZelDhYLgA5chk7mpqW1Skxmh_94pFVy5uhw437nwIXRNyS0lRN5lSirKC0LrQtVcFfsTNKJCskIpyU_RiCgmC0mUOkcXOa8JIYIyNkLPEzyNofOhj33GM-8cJBiyaTaA3803bKDDLx_Jh0-zArzog-18DNjFhOc2hrj1Fs9MZ_AMQvTZh9UlOnNmk-Hq947R22L-On0olk_3j9PJsrBlTbtCWgq8sgYEq0hbg7K2bWxJa-4asFyAAee4atpKyIZDS4VtreCcG-5EqUQ5RjfH3V2KXz3kTq9jn8LwUjNKGK1KWdKhRY8tm2LOCZzeJb81aa8p0Qd1-qhOD-r0QZ3eDww7MnnohhWkv-X_oR80u3MX</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>He, Fan</creator><creator>He, Xuansen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20190801</creationdate><title>A Continuous Differentiable Wavelet Shrinkage Function for Economic Data Denoising</title><author>He, Fan ; He, Xuansen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-7c1e46cae5260d8e9ccdbc3184fbec45eaeff49bd657b4ed15cdc5444a4f53953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Behavioral/Experimental Economics</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Continuity (mathematics)</topic><topic>Economic analysis</topic><topic>Economic models</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Math Applications in Computer Science</topic><topic>Model accuracy</topic><topic>Noise</topic><topic>Noise prediction</topic><topic>Noise reduction</topic><topic>Operations Research/Decision Theory</topic><topic>Parameters</topic><topic>Performance enhancement</topic><topic>Securities markets</topic><topic>Shrinkage</topic><topic>Time series</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Fan</creatorcontrib><creatorcontrib>He, Xuansen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Fan</au><au>He, Xuansen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Continuous Differentiable Wavelet Shrinkage Function for Economic Data Denoising</atitle><jtitle>Computational economics</jtitle><stitle>Comput Econ</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>54</volume><issue>2</issue><spage>729</spage><epage>761</epage><pages>729-761</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>In economic (financial) time series analysis, prediction plays an important role and the inclusion of noise in the time series data is also a common phenomenon. In particular, stock market data are highly random and non-stationary, thus they contain much noise. Prediction of the noise-free data is quite difficult when noise is present. Therefore, removal of such noise before predicting can significantly improve the prediction accuracy of economic models. Based on this consideration, this paper proposes a new shrinkage (thresholding) function to improve the performance of wavelet shrinkage denoising. The proposed thresholding function is an arctangent function with several parameters to be determined and the optimal parameters are determined by ensuring that the thresholding function satisfies the condition of continuously differentiable. The closing price data with the Shanghai Composite Index from January 1991 to December 2014 are used to illustrate the application of the proposed shrinkage function in denoising the stock data. The experimental results show that compared with the classical shrinkage (hard, soft, and nonnegative garrote) functions, the proposed thresholding function not only has the advantage of continuous derivative, but also has a very competitive denoising performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10614-018-9849-y</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-7099
ispartof Computational economics, 2019-08, Vol.54 (2), p.729-761
issn 0927-7099
1572-9974
language eng
recordid cdi_proquest_journals_2102163731
source SpringerNature Journals
subjects Behavioral/Experimental Economics
Computer Appl. in Social and Behavioral Sciences
Continuity (mathematics)
Economic analysis
Economic models
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Math Applications in Computer Science
Model accuracy
Noise
Noise prediction
Noise reduction
Operations Research/Decision Theory
Parameters
Performance enhancement
Securities markets
Shrinkage
Time series
Wavelet analysis
title A Continuous Differentiable Wavelet Shrinkage Function for Economic Data Denoising
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Continuous%20Differentiable%20Wavelet%20Shrinkage%20Function%20for%20Economic%20Data%20Denoising&rft.jtitle=Computational%20economics&rft.au=He,%20Fan&rft.date=2019-08-01&rft.volume=54&rft.issue=2&rft.spage=729&rft.epage=761&rft.pages=729-761&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-018-9849-y&rft_dat=%3Cproquest_cross%3E2102163731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2102163731&rft_id=info:pmid/&rfr_iscdi=true