Fully automatic prostate segmentation in MR images using a new hybrid active contour-based approach

Precise prostate segmentation in magnetic resonance (MR) images is mostly utilized for prostate volume estimation, which can help in the determination of prostate-specific antigen density. In this paper, a fully automatic method that contains three successful steps to segment the prostate area in MR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing image and video processing, 2018-11, Vol.12 (8), p.1629-1637
Hauptverfasser: Salimi, Ahad, Pourmina, Mohammad Ali, Moin, Mohammad-Shahram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1637
container_issue 8
container_start_page 1629
container_title Signal, image and video processing
container_volume 12
creator Salimi, Ahad
Pourmina, Mohammad Ali
Moin, Mohammad-Shahram
description Precise prostate segmentation in magnetic resonance (MR) images is mostly utilized for prostate volume estimation, which can help in the determination of prostate-specific antigen density. In this paper, a fully automatic method that contains three successful steps to segment the prostate area in MR images is presented. This method includes a preprocessing stage, an automatic initial point generation step and an active contour-based algorithm with an external force known as vector field convolution (VFC). First, both noise and roughness are approximately removed using Sticks filter and morphology smoothing method. Then, an initial point is automatically generated using multilayer perceptron neural network to initiate the segmentation algorithm. Finally, VFC is employed to extract the prostate region. This system was tested on image data sets to detect the prostate boundaries. Results show that the proposed method can reach a DSC value of 86 ± 6 % , is faster than existing methods and also more robust as compared to other methods.
doi_str_mv 10.1007/s11760-018-1320-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2101981367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2101981367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a5454a70fefc6102f28fc912e665eaddbb7bf8dffb5682b622822adb517e12383</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJg0f4AbwHP0UzSTdKjFKtCRRA9hySbbLe02brJKvvvTanoybnMMLyPmYfQFdAboFTeJgApKKGgCHBGyXiCJqAEJyABTn9nys_RNKUNLcWZVEJNkFsO2-2IzZC7ncmtw_u-S9lkj5Nvdj6Wse0ibiN-fsXtzjQ-4SG1scEGR_-F16Pt2xobl9tPj10Xczf0xJrky3JfxIxbX6KzYLbJT3_6BXpf3r8tHsnq5eFpcbcijoPIxFSzamYkDT44AZQFpoKbA_NCVN7UtbXSBlWHYCuhmBWMKcZMbSuQHhhX_AJdH3WL7cfgU9abckwslpoBhbkCLmRBwRHlyqep90Hv-_JYP2qg-hCnPsapS5z6EKceC4cdOalgY-P7P-X_Sd8tfXlx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101981367</pqid></control><display><type>article</type><title>Fully automatic prostate segmentation in MR images using a new hybrid active contour-based approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Salimi, Ahad ; Pourmina, Mohammad Ali ; Moin, Mohammad-Shahram</creator><creatorcontrib>Salimi, Ahad ; Pourmina, Mohammad Ali ; Moin, Mohammad-Shahram</creatorcontrib><description>Precise prostate segmentation in magnetic resonance (MR) images is mostly utilized for prostate volume estimation, which can help in the determination of prostate-specific antigen density. In this paper, a fully automatic method that contains three successful steps to segment the prostate area in MR images is presented. This method includes a preprocessing stage, an automatic initial point generation step and an active contour-based algorithm with an external force known as vector field convolution (VFC). First, both noise and roughness are approximately removed using Sticks filter and morphology smoothing method. Then, an initial point is automatically generated using multilayer perceptron neural network to initiate the segmentation algorithm. Finally, VFC is employed to extract the prostate region. This system was tested on image data sets to detect the prostate boundaries. Results show that the proposed method can reach a DSC value of 86 ± 6 % , is faster than existing methods and also more robust as compared to other methods.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-018-1320-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Computer Imaging ; Computer Science ; Contours ; Convolution ; Image detection ; Image Processing and Computer Vision ; Image segmentation ; Magnetic resonance imaging ; Morphology ; Multilayer perceptrons ; Multimedia Information Systems ; Neural networks ; Original Paper ; Pattern Recognition and Graphics ; Prostate ; Shape ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2018-11, Vol.12 (8), p.1629-1637</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a5454a70fefc6102f28fc912e665eaddbb7bf8dffb5682b622822adb517e12383</citedby><cites>FETCH-LOGICAL-c316t-a5454a70fefc6102f28fc912e665eaddbb7bf8dffb5682b622822adb517e12383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-018-1320-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-018-1320-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Salimi, Ahad</creatorcontrib><creatorcontrib>Pourmina, Mohammad Ali</creatorcontrib><creatorcontrib>Moin, Mohammad-Shahram</creatorcontrib><title>Fully automatic prostate segmentation in MR images using a new hybrid active contour-based approach</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Precise prostate segmentation in magnetic resonance (MR) images is mostly utilized for prostate volume estimation, which can help in the determination of prostate-specific antigen density. In this paper, a fully automatic method that contains three successful steps to segment the prostate area in MR images is presented. This method includes a preprocessing stage, an automatic initial point generation step and an active contour-based algorithm with an external force known as vector field convolution (VFC). First, both noise and roughness are approximately removed using Sticks filter and morphology smoothing method. Then, an initial point is automatically generated using multilayer perceptron neural network to initiate the segmentation algorithm. Finally, VFC is employed to extract the prostate region. This system was tested on image data sets to detect the prostate boundaries. Results show that the proposed method can reach a DSC value of 86 ± 6 % , is faster than existing methods and also more robust as compared to other methods.</description><subject>Algorithms</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Contours</subject><subject>Convolution</subject><subject>Image detection</subject><subject>Image Processing and Computer Vision</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>Morphology</subject><subject>Multilayer perceptrons</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Prostate</subject><subject>Shape</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJg0f4AbwHP0UzSTdKjFKtCRRA9hySbbLe02brJKvvvTanoybnMMLyPmYfQFdAboFTeJgApKKGgCHBGyXiCJqAEJyABTn9nys_RNKUNLcWZVEJNkFsO2-2IzZC7ncmtw_u-S9lkj5Nvdj6Wse0ibiN-fsXtzjQ-4SG1scEGR_-F16Pt2xobl9tPj10Xczf0xJrky3JfxIxbX6KzYLbJT3_6BXpf3r8tHsnq5eFpcbcijoPIxFSzamYkDT44AZQFpoKbA_NCVN7UtbXSBlWHYCuhmBWMKcZMbSuQHhhX_AJdH3WL7cfgU9abckwslpoBhbkCLmRBwRHlyqep90Hv-_JYP2qg-hCnPsapS5z6EKceC4cdOalgY-P7P-X_Sd8tfXlx</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Salimi, Ahad</creator><creator>Pourmina, Mohammad Ali</creator><creator>Moin, Mohammad-Shahram</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>Fully automatic prostate segmentation in MR images using a new hybrid active contour-based approach</title><author>Salimi, Ahad ; Pourmina, Mohammad Ali ; Moin, Mohammad-Shahram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a5454a70fefc6102f28fc912e665eaddbb7bf8dffb5682b622822adb517e12383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Contours</topic><topic>Convolution</topic><topic>Image detection</topic><topic>Image Processing and Computer Vision</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>Morphology</topic><topic>Multilayer perceptrons</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Prostate</topic><topic>Shape</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salimi, Ahad</creatorcontrib><creatorcontrib>Pourmina, Mohammad Ali</creatorcontrib><creatorcontrib>Moin, Mohammad-Shahram</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salimi, Ahad</au><au>Pourmina, Mohammad Ali</au><au>Moin, Mohammad-Shahram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully automatic prostate segmentation in MR images using a new hybrid active contour-based approach</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>12</volume><issue>8</issue><spage>1629</spage><epage>1637</epage><pages>1629-1637</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Precise prostate segmentation in magnetic resonance (MR) images is mostly utilized for prostate volume estimation, which can help in the determination of prostate-specific antigen density. In this paper, a fully automatic method that contains three successful steps to segment the prostate area in MR images is presented. This method includes a preprocessing stage, an automatic initial point generation step and an active contour-based algorithm with an external force known as vector field convolution (VFC). First, both noise and roughness are approximately removed using Sticks filter and morphology smoothing method. Then, an initial point is automatically generated using multilayer perceptron neural network to initiate the segmentation algorithm. Finally, VFC is employed to extract the prostate region. This system was tested on image data sets to detect the prostate boundaries. Results show that the proposed method can reach a DSC value of 86 ± 6 % , is faster than existing methods and also more robust as compared to other methods.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-018-1320-y</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2018-11, Vol.12 (8), p.1629-1637
issn 1863-1703
1863-1711
language eng
recordid cdi_proquest_journals_2101981367
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Computer Imaging
Computer Science
Contours
Convolution
Image detection
Image Processing and Computer Vision
Image segmentation
Magnetic resonance imaging
Morphology
Multilayer perceptrons
Multimedia Information Systems
Neural networks
Original Paper
Pattern Recognition and Graphics
Prostate
Shape
Signal,Image and Speech Processing
Vision
title Fully automatic prostate segmentation in MR images using a new hybrid active contour-based approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20automatic%20prostate%20segmentation%20in%20MR%20images%20using%20a%20new%20hybrid%20active%20contour-based%20approach&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Salimi,%20Ahad&rft.date=2018-11-01&rft.volume=12&rft.issue=8&rft.spage=1629&rft.epage=1637&rft.pages=1629-1637&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-018-1320-y&rft_dat=%3Cproquest_cross%3E2101981367%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101981367&rft_id=info:pmid/&rfr_iscdi=true