Fully automatic prostate segmentation in MR images using a new hybrid active contour-based approach
Precise prostate segmentation in magnetic resonance (MR) images is mostly utilized for prostate volume estimation, which can help in the determination of prostate-specific antigen density. In this paper, a fully automatic method that contains three successful steps to segment the prostate area in MR...
Gespeichert in:
Veröffentlicht in: | Signal, image and video processing image and video processing, 2018-11, Vol.12 (8), p.1629-1637 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1637 |
---|---|
container_issue | 8 |
container_start_page | 1629 |
container_title | Signal, image and video processing |
container_volume | 12 |
creator | Salimi, Ahad Pourmina, Mohammad Ali Moin, Mohammad-Shahram |
description | Precise prostate segmentation in magnetic resonance (MR) images is mostly utilized for prostate volume estimation, which can help in the determination of prostate-specific antigen density. In this paper, a fully automatic method that contains three successful steps to segment the prostate area in MR images is presented. This method includes a preprocessing stage, an automatic initial point generation step and an active contour-based algorithm with an external force known as vector field convolution (VFC). First, both noise and roughness are approximately removed using Sticks filter and morphology smoothing method. Then, an initial point is automatically generated using multilayer perceptron neural network to initiate the segmentation algorithm. Finally, VFC is employed to extract the prostate region. This system was tested on image data sets to detect the prostate boundaries. Results show that the proposed method can reach a DSC value of
86
±
6
%
, is faster than existing methods and also more robust as compared to other methods. |
doi_str_mv | 10.1007/s11760-018-1320-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2101981367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2101981367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a5454a70fefc6102f28fc912e665eaddbb7bf8dffb5682b622822adb517e12383</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJg0f4AbwHP0UzSTdKjFKtCRRA9hySbbLe02brJKvvvTanoybnMMLyPmYfQFdAboFTeJgApKKGgCHBGyXiCJqAEJyABTn9nys_RNKUNLcWZVEJNkFsO2-2IzZC7ncmtw_u-S9lkj5Nvdj6Wse0ibiN-fsXtzjQ-4SG1scEGR_-F16Pt2xobl9tPj10Xczf0xJrky3JfxIxbX6KzYLbJT3_6BXpf3r8tHsnq5eFpcbcijoPIxFSzamYkDT44AZQFpoKbA_NCVN7UtbXSBlWHYCuhmBWMKcZMbSuQHhhX_AJdH3WL7cfgU9abckwslpoBhbkCLmRBwRHlyqep90Hv-_JYP2qg-hCnPsapS5z6EKceC4cdOalgY-P7P-X_Sd8tfXlx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101981367</pqid></control><display><type>article</type><title>Fully automatic prostate segmentation in MR images using a new hybrid active contour-based approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Salimi, Ahad ; Pourmina, Mohammad Ali ; Moin, Mohammad-Shahram</creator><creatorcontrib>Salimi, Ahad ; Pourmina, Mohammad Ali ; Moin, Mohammad-Shahram</creatorcontrib><description>Precise prostate segmentation in magnetic resonance (MR) images is mostly utilized for prostate volume estimation, which can help in the determination of prostate-specific antigen density. In this paper, a fully automatic method that contains three successful steps to segment the prostate area in MR images is presented. This method includes a preprocessing stage, an automatic initial point generation step and an active contour-based algorithm with an external force known as vector field convolution (VFC). First, both noise and roughness are approximately removed using Sticks filter and morphology smoothing method. Then, an initial point is automatically generated using multilayer perceptron neural network to initiate the segmentation algorithm. Finally, VFC is employed to extract the prostate region. This system was tested on image data sets to detect the prostate boundaries. Results show that the proposed method can reach a DSC value of
86
±
6
%
, is faster than existing methods and also more robust as compared to other methods.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-018-1320-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Computer Imaging ; Computer Science ; Contours ; Convolution ; Image detection ; Image Processing and Computer Vision ; Image segmentation ; Magnetic resonance imaging ; Morphology ; Multilayer perceptrons ; Multimedia Information Systems ; Neural networks ; Original Paper ; Pattern Recognition and Graphics ; Prostate ; Shape ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2018-11, Vol.12 (8), p.1629-1637</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a5454a70fefc6102f28fc912e665eaddbb7bf8dffb5682b622822adb517e12383</citedby><cites>FETCH-LOGICAL-c316t-a5454a70fefc6102f28fc912e665eaddbb7bf8dffb5682b622822adb517e12383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-018-1320-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-018-1320-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Salimi, Ahad</creatorcontrib><creatorcontrib>Pourmina, Mohammad Ali</creatorcontrib><creatorcontrib>Moin, Mohammad-Shahram</creatorcontrib><title>Fully automatic prostate segmentation in MR images using a new hybrid active contour-based approach</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Precise prostate segmentation in magnetic resonance (MR) images is mostly utilized for prostate volume estimation, which can help in the determination of prostate-specific antigen density. In this paper, a fully automatic method that contains three successful steps to segment the prostate area in MR images is presented. This method includes a preprocessing stage, an automatic initial point generation step and an active contour-based algorithm with an external force known as vector field convolution (VFC). First, both noise and roughness are approximately removed using Sticks filter and morphology smoothing method. Then, an initial point is automatically generated using multilayer perceptron neural network to initiate the segmentation algorithm. Finally, VFC is employed to extract the prostate region. This system was tested on image data sets to detect the prostate boundaries. Results show that the proposed method can reach a DSC value of
86
±
6
%
, is faster than existing methods and also more robust as compared to other methods.</description><subject>Algorithms</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Contours</subject><subject>Convolution</subject><subject>Image detection</subject><subject>Image Processing and Computer Vision</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>Morphology</subject><subject>Multilayer perceptrons</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Prostate</subject><subject>Shape</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJg0f4AbwHP0UzSTdKjFKtCRRA9hySbbLe02brJKvvvTanoybnMMLyPmYfQFdAboFTeJgApKKGgCHBGyXiCJqAEJyABTn9nys_RNKUNLcWZVEJNkFsO2-2IzZC7ncmtw_u-S9lkj5Nvdj6Wse0ibiN-fsXtzjQ-4SG1scEGR_-F16Pt2xobl9tPj10Xczf0xJrky3JfxIxbX6KzYLbJT3_6BXpf3r8tHsnq5eFpcbcijoPIxFSzamYkDT44AZQFpoKbA_NCVN7UtbXSBlWHYCuhmBWMKcZMbSuQHhhX_AJdH3WL7cfgU9abckwslpoBhbkCLmRBwRHlyqep90Hv-_JYP2qg-hCnPsapS5z6EKceC4cdOalgY-P7P-X_Sd8tfXlx</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Salimi, Ahad</creator><creator>Pourmina, Mohammad Ali</creator><creator>Moin, Mohammad-Shahram</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>Fully automatic prostate segmentation in MR images using a new hybrid active contour-based approach</title><author>Salimi, Ahad ; Pourmina, Mohammad Ali ; Moin, Mohammad-Shahram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a5454a70fefc6102f28fc912e665eaddbb7bf8dffb5682b622822adb517e12383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Contours</topic><topic>Convolution</topic><topic>Image detection</topic><topic>Image Processing and Computer Vision</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>Morphology</topic><topic>Multilayer perceptrons</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Prostate</topic><topic>Shape</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salimi, Ahad</creatorcontrib><creatorcontrib>Pourmina, Mohammad Ali</creatorcontrib><creatorcontrib>Moin, Mohammad-Shahram</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salimi, Ahad</au><au>Pourmina, Mohammad Ali</au><au>Moin, Mohammad-Shahram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully automatic prostate segmentation in MR images using a new hybrid active contour-based approach</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>12</volume><issue>8</issue><spage>1629</spage><epage>1637</epage><pages>1629-1637</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Precise prostate segmentation in magnetic resonance (MR) images is mostly utilized for prostate volume estimation, which can help in the determination of prostate-specific antigen density. In this paper, a fully automatic method that contains three successful steps to segment the prostate area in MR images is presented. This method includes a preprocessing stage, an automatic initial point generation step and an active contour-based algorithm with an external force known as vector field convolution (VFC). First, both noise and roughness are approximately removed using Sticks filter and morphology smoothing method. Then, an initial point is automatically generated using multilayer perceptron neural network to initiate the segmentation algorithm. Finally, VFC is employed to extract the prostate region. This system was tested on image data sets to detect the prostate boundaries. Results show that the proposed method can reach a DSC value of
86
±
6
%
, is faster than existing methods and also more robust as compared to other methods.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-018-1320-y</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-1703 |
ispartof | Signal, image and video processing, 2018-11, Vol.12 (8), p.1629-1637 |
issn | 1863-1703 1863-1711 |
language | eng |
recordid | cdi_proquest_journals_2101981367 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Computer Imaging Computer Science Contours Convolution Image detection Image Processing and Computer Vision Image segmentation Magnetic resonance imaging Morphology Multilayer perceptrons Multimedia Information Systems Neural networks Original Paper Pattern Recognition and Graphics Prostate Shape Signal,Image and Speech Processing Vision |
title | Fully automatic prostate segmentation in MR images using a new hybrid active contour-based approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20automatic%20prostate%20segmentation%20in%20MR%20images%20using%20a%20new%20hybrid%20active%20contour-based%20approach&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Salimi,%20Ahad&rft.date=2018-11-01&rft.volume=12&rft.issue=8&rft.spage=1629&rft.epage=1637&rft.pages=1629-1637&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-018-1320-y&rft_dat=%3Cproquest_cross%3E2101981367%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101981367&rft_id=info:pmid/&rfr_iscdi=true |