Effects of Geometries and Substructures of ICMEs on Geomagnetic Storms
To better understand geomagnetic storm generations by ICMEs, we consider the effect of substructures (magnetic cloud, MC, and sheath) and geometries (impact location of flux-rope at the Earth) of the ICMEs. We apply the toroidal magnetic flux-rope model to 59 CDAW CME–ICME pairs to identify their su...
Gespeichert in:
Veröffentlicht in: | Solar physics 2018-09, Vol.293 (9), p.1-20, Article 129 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | Solar physics |
container_volume | 293 |
creator | Lee, Jae-Ok Cho, Kyung-Suk Kim, Rok-Soon Jang, Soojeong Marubashi, Katsuhide |
description | To better understand geomagnetic storm generations by ICMEs, we consider the effect of substructures (magnetic cloud, MC, and sheath) and geometries (impact location of flux-rope at the Earth) of the ICMEs. We apply the toroidal magnetic flux-rope model to 59 CDAW CME–ICME pairs to identify their substructures and geometries, and select 20 MC-associated and five sheath-associated storm events. We investigate the relationship between the storm strength indicated by minimum Dst index
(
Dst
min
)
and solar wind conditions related to a southward magnetic field. We find that all slopes of linear regression lines for sheath-storm events are steeper (
≥
1.4
) than those of the MC-storm events in the relationship between
Dst
min
and solar wind conditions, implying that the efficiency of sheath for the process of geomagnetic storm generations is higher than that of MC. These results suggest that different general solar wind conditions (sheaths have a higher density, dynamic and thermal pressures with a higher fluctuation of the parameters and higher magnetic fields than MCs) have different impact on storm generation. Regarding the geometric encounter of ICMEs, 100% (2/2) of major storms (
Dst
min
≤
−
100
nT
) occur in the regions at negative
P
Y
(relative position of the Earth trajectory from the ICME axis in the
Y
component of the GSE coordinate) when the eastern flanks of ICMEs encounter the Earth. We find similar statistical trends in solar wind conditions, suggesting that the dependence of geomagnetic storms on 3D ICME–Earth impact geometries is caused by asymmetric distributions of the geoeffective solar wind conditions. For western flank events, 80% (4/5) of the major storms occur in positive
P
Y
regions, while intense geoeffective solar wind conditions are not located in the positive
P
Y
. These results suggest that the strength of geomagnetic storms depends on ICME–Earth impact geometries as they determine the solar wind conditions at Earth. |
doi_str_mv | 10.1007/s11207-018-1344-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2100184973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2100184973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9cb0778e7d63ac126dac69ffbfadb046d79207d4f87db66a7476cf197b98c4443</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoOFZ_gLsB19FkkuaxlKEvqLiogruQyaO02JmaZBb215vpCK5c3QP3fPdyDgD3GD1ihPhTxLhCHCIsICaUwtMFKPCUE4gk-bgEBUJEDFpcg5sY9wgN1LQA85n3zqRYdr5cuO7gUti5WOrWlpu-iSn0JvXBnfer-mWWRXs26m3r0s6Um9SFQ7wFV15_Rnf3OyfgfT57q5dw_bpY1c9raAhmCUrTIM6F45YRbXDFrDZMet94bRtEmeUyp7DUC24bxjSnnBmPJW-kMJRSMgEP491j6L56F5Pad31o80tV5URYUMlJduHRZUIXY3BeHcPuoMO3wkgNwdVYl8qAGupSp8xUIxOzt9268Hf5f-gHAmZtVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100184973</pqid></control><display><type>article</type><title>Effects of Geometries and Substructures of ICMEs on Geomagnetic Storms</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lee, Jae-Ok ; Cho, Kyung-Suk ; Kim, Rok-Soon ; Jang, Soojeong ; Marubashi, Katsuhide</creator><creatorcontrib>Lee, Jae-Ok ; Cho, Kyung-Suk ; Kim, Rok-Soon ; Jang, Soojeong ; Marubashi, Katsuhide</creatorcontrib><description>To better understand geomagnetic storm generations by ICMEs, we consider the effect of substructures (magnetic cloud, MC, and sheath) and geometries (impact location of flux-rope at the Earth) of the ICMEs. We apply the toroidal magnetic flux-rope model to 59 CDAW CME–ICME pairs to identify their substructures and geometries, and select 20 MC-associated and five sheath-associated storm events. We investigate the relationship between the storm strength indicated by minimum Dst index
(
Dst
min
)
and solar wind conditions related to a southward magnetic field. We find that all slopes of linear regression lines for sheath-storm events are steeper (
≥
1.4
) than those of the MC-storm events in the relationship between
Dst
min
and solar wind conditions, implying that the efficiency of sheath for the process of geomagnetic storm generations is higher than that of MC. These results suggest that different general solar wind conditions (sheaths have a higher density, dynamic and thermal pressures with a higher fluctuation of the parameters and higher magnetic fields than MCs) have different impact on storm generation. Regarding the geometric encounter of ICMEs, 100% (2/2) of major storms (
Dst
min
≤
−
100
nT
) occur in the regions at negative
P
Y
(relative position of the Earth trajectory from the ICME axis in the
Y
component of the GSE coordinate) when the eastern flanks of ICMEs encounter the Earth. We find similar statistical trends in solar wind conditions, suggesting that the dependence of geomagnetic storms on 3D ICME–Earth impact geometries is caused by asymmetric distributions of the geoeffective solar wind conditions. For western flank events, 80% (4/5) of the major storms occur in positive
P
Y
regions, while intense geoeffective solar wind conditions are not located in the positive
P
Y
. These results suggest that the strength of geomagnetic storms depends on ICME–Earth impact geometries as they determine the solar wind conditions at Earth.</description><identifier>ISSN: 0038-0938</identifier><identifier>EISSN: 1573-093X</identifier><identifier>DOI: 10.1007/s11207-018-1344-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Astrophysics and Astroparticles ; Atmospheric Sciences ; Dependence ; DST Index ; Earth ; Geomagnetic storms ; Geomagnetism ; Magnetic clouds ; Magnetic fields ; Magnetic flux ; Magnetic storms ; Physics ; Physics and Astronomy ; Saturn ; Sheaths ; Skewed distributions ; Solar physics ; Solar wind ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Statistical analysis ; Storms ; Substructures ; Variation</subject><ispartof>Solar physics, 2018-09, Vol.293 (9), p.1-20, Article 129</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Solar Physics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9cb0778e7d63ac126dac69ffbfadb046d79207d4f87db66a7476cf197b98c4443</citedby><cites>FETCH-LOGICAL-c316t-9cb0778e7d63ac126dac69ffbfadb046d79207d4f87db66a7476cf197b98c4443</cites><orcidid>0000-0002-5365-0854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11207-018-1344-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11207-018-1344-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Lee, Jae-Ok</creatorcontrib><creatorcontrib>Cho, Kyung-Suk</creatorcontrib><creatorcontrib>Kim, Rok-Soon</creatorcontrib><creatorcontrib>Jang, Soojeong</creatorcontrib><creatorcontrib>Marubashi, Katsuhide</creatorcontrib><title>Effects of Geometries and Substructures of ICMEs on Geomagnetic Storms</title><title>Solar physics</title><addtitle>Sol Phys</addtitle><description>To better understand geomagnetic storm generations by ICMEs, we consider the effect of substructures (magnetic cloud, MC, and sheath) and geometries (impact location of flux-rope at the Earth) of the ICMEs. We apply the toroidal magnetic flux-rope model to 59 CDAW CME–ICME pairs to identify their substructures and geometries, and select 20 MC-associated and five sheath-associated storm events. We investigate the relationship between the storm strength indicated by minimum Dst index
(
Dst
min
)
and solar wind conditions related to a southward magnetic field. We find that all slopes of linear regression lines for sheath-storm events are steeper (
≥
1.4
) than those of the MC-storm events in the relationship between
Dst
min
and solar wind conditions, implying that the efficiency of sheath for the process of geomagnetic storm generations is higher than that of MC. These results suggest that different general solar wind conditions (sheaths have a higher density, dynamic and thermal pressures with a higher fluctuation of the parameters and higher magnetic fields than MCs) have different impact on storm generation. Regarding the geometric encounter of ICMEs, 100% (2/2) of major storms (
Dst
min
≤
−
100
nT
) occur in the regions at negative
P
Y
(relative position of the Earth trajectory from the ICME axis in the
Y
component of the GSE coordinate) when the eastern flanks of ICMEs encounter the Earth. We find similar statistical trends in solar wind conditions, suggesting that the dependence of geomagnetic storms on 3D ICME–Earth impact geometries is caused by asymmetric distributions of the geoeffective solar wind conditions. For western flank events, 80% (4/5) of the major storms occur in positive
P
Y
regions, while intense geoeffective solar wind conditions are not located in the positive
P
Y
. These results suggest that the strength of geomagnetic storms depends on ICME–Earth impact geometries as they determine the solar wind conditions at Earth.</description><subject>Astrophysics and Astroparticles</subject><subject>Atmospheric Sciences</subject><subject>Dependence</subject><subject>DST Index</subject><subject>Earth</subject><subject>Geomagnetic storms</subject><subject>Geomagnetism</subject><subject>Magnetic clouds</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetic storms</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Saturn</subject><subject>Sheaths</subject><subject>Skewed distributions</subject><subject>Solar physics</subject><subject>Solar wind</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Statistical analysis</subject><subject>Storms</subject><subject>Substructures</subject><subject>Variation</subject><issn>0038-0938</issn><issn>1573-093X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoOFZ_gLsB19FkkuaxlKEvqLiogruQyaO02JmaZBb215vpCK5c3QP3fPdyDgD3GD1ihPhTxLhCHCIsICaUwtMFKPCUE4gk-bgEBUJEDFpcg5sY9wgN1LQA85n3zqRYdr5cuO7gUti5WOrWlpu-iSn0JvXBnfer-mWWRXs26m3r0s6Um9SFQ7wFV15_Rnf3OyfgfT57q5dw_bpY1c9raAhmCUrTIM6F45YRbXDFrDZMet94bRtEmeUyp7DUC24bxjSnnBmPJW-kMJRSMgEP491j6L56F5Pad31o80tV5URYUMlJduHRZUIXY3BeHcPuoMO3wkgNwdVYl8qAGupSp8xUIxOzt9268Hf5f-gHAmZtVw</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Lee, Jae-Ok</creator><creator>Cho, Kyung-Suk</creator><creator>Kim, Rok-Soon</creator><creator>Jang, Soojeong</creator><creator>Marubashi, Katsuhide</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5365-0854</orcidid></search><sort><creationdate>20180901</creationdate><title>Effects of Geometries and Substructures of ICMEs on Geomagnetic Storms</title><author>Lee, Jae-Ok ; Cho, Kyung-Suk ; Kim, Rok-Soon ; Jang, Soojeong ; Marubashi, Katsuhide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9cb0778e7d63ac126dac69ffbfadb046d79207d4f87db66a7476cf197b98c4443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astrophysics and Astroparticles</topic><topic>Atmospheric Sciences</topic><topic>Dependence</topic><topic>DST Index</topic><topic>Earth</topic><topic>Geomagnetic storms</topic><topic>Geomagnetism</topic><topic>Magnetic clouds</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetic storms</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Saturn</topic><topic>Sheaths</topic><topic>Skewed distributions</topic><topic>Solar physics</topic><topic>Solar wind</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Statistical analysis</topic><topic>Storms</topic><topic>Substructures</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jae-Ok</creatorcontrib><creatorcontrib>Cho, Kyung-Suk</creatorcontrib><creatorcontrib>Kim, Rok-Soon</creatorcontrib><creatorcontrib>Jang, Soojeong</creatorcontrib><creatorcontrib>Marubashi, Katsuhide</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Solar physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jae-Ok</au><au>Cho, Kyung-Suk</au><au>Kim, Rok-Soon</au><au>Jang, Soojeong</au><au>Marubashi, Katsuhide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Geometries and Substructures of ICMEs on Geomagnetic Storms</atitle><jtitle>Solar physics</jtitle><stitle>Sol Phys</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>293</volume><issue>9</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><artnum>129</artnum><issn>0038-0938</issn><eissn>1573-093X</eissn><abstract>To better understand geomagnetic storm generations by ICMEs, we consider the effect of substructures (magnetic cloud, MC, and sheath) and geometries (impact location of flux-rope at the Earth) of the ICMEs. We apply the toroidal magnetic flux-rope model to 59 CDAW CME–ICME pairs to identify their substructures and geometries, and select 20 MC-associated and five sheath-associated storm events. We investigate the relationship between the storm strength indicated by minimum Dst index
(
Dst
min
)
and solar wind conditions related to a southward magnetic field. We find that all slopes of linear regression lines for sheath-storm events are steeper (
≥
1.4
) than those of the MC-storm events in the relationship between
Dst
min
and solar wind conditions, implying that the efficiency of sheath for the process of geomagnetic storm generations is higher than that of MC. These results suggest that different general solar wind conditions (sheaths have a higher density, dynamic and thermal pressures with a higher fluctuation of the parameters and higher magnetic fields than MCs) have different impact on storm generation. Regarding the geometric encounter of ICMEs, 100% (2/2) of major storms (
Dst
min
≤
−
100
nT
) occur in the regions at negative
P
Y
(relative position of the Earth trajectory from the ICME axis in the
Y
component of the GSE coordinate) when the eastern flanks of ICMEs encounter the Earth. We find similar statistical trends in solar wind conditions, suggesting that the dependence of geomagnetic storms on 3D ICME–Earth impact geometries is caused by asymmetric distributions of the geoeffective solar wind conditions. For western flank events, 80% (4/5) of the major storms occur in positive
P
Y
regions, while intense geoeffective solar wind conditions are not located in the positive
P
Y
. These results suggest that the strength of geomagnetic storms depends on ICME–Earth impact geometries as they determine the solar wind conditions at Earth.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11207-018-1344-z</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5365-0854</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-0938 |
ispartof | Solar physics, 2018-09, Vol.293 (9), p.1-20, Article 129 |
issn | 0038-0938 1573-093X |
language | eng |
recordid | cdi_proquest_journals_2100184973 |
source | SpringerLink Journals - AutoHoldings |
subjects | Astrophysics and Astroparticles Atmospheric Sciences Dependence DST Index Earth Geomagnetic storms Geomagnetism Magnetic clouds Magnetic fields Magnetic flux Magnetic storms Physics Physics and Astronomy Saturn Sheaths Skewed distributions Solar physics Solar wind Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Statistical analysis Storms Substructures Variation |
title | Effects of Geometries and Substructures of ICMEs on Geomagnetic Storms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Geometries%20and%20Substructures%20of%20ICMEs%20on%20Geomagnetic%20Storms&rft.jtitle=Solar%20physics&rft.au=Lee,%20Jae-Ok&rft.date=2018-09-01&rft.volume=293&rft.issue=9&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.artnum=129&rft.issn=0038-0938&rft.eissn=1573-093X&rft_id=info:doi/10.1007/s11207-018-1344-z&rft_dat=%3Cproquest_cross%3E2100184973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2100184973&rft_id=info:pmid/&rfr_iscdi=true |