Extraction of GGO Candidate Regions on Thoracic CT Images using SuperVoxel-Based Graph Cuts for Healthcare Systems

In this paper, we propose a method to reduce artifacts on temporal difference images by improving the conventional method using a non-rigid registration method for ground glass opacification (GGO), which is light in concentration and difficult to detect early. In this method, global matching, local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile networks and applications 2018-12, Vol.23 (6), p.1669-1679
Hauptverfasser: Lu, Huimin, Kondo, Masashi, Li, Yujie, Tan, JooKooi, Kim, Hyoungseop, Murakami, Seiichi, Aoki, Takotoshi, Kido, Shoji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1679
container_issue 6
container_start_page 1669
container_title Mobile networks and applications
container_volume 23
creator Lu, Huimin
Kondo, Masashi
Li, Yujie
Tan, JooKooi
Kim, Hyoungseop
Murakami, Seiichi
Aoki, Takotoshi
Kido, Shoji
description In this paper, we propose a method to reduce artifacts on temporal difference images by improving the conventional method using a non-rigid registration method for ground glass opacification (GGO), which is light in concentration and difficult to detect early. In this method, global matching, local matching, and 3D elastic matching are performed on the current image and past image, and an initial temporal difference image is generated. After that, we use an Iris filter, which is the gradient vector concentration degree filter, to determine the initial GGO candidate regions and perform segmentation using SuperVoxel and Graph Cuts in which a superpixel is extended to three dimensions for each region of interest. For each extracted region, a support vector machine (SVM) is used to reduce the over-segmentation. Finally, in the method that greatly reduces artifacts other than the remaining GGO candidate regions, Voxel Matching is applied to generate the final temporal difference image, emphasizing the GGO regions while reducing the artifact. The resulting ratio of artifacts to lung volume is 0.101 with an FWHM of 28.3, which is an improvement over the conventional method and shows the proposed method’s effectiveness.
doi_str_mv 10.1007/s11036-018-1111-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2100105846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2100105846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-21af180baa509ad087e499fca1afb28e068452a068ddbc68e3fd5a796460baef3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLcFz6u7-bs5aqhpoSDYKt6WaTKbprRJ3N1A--3dEsGTc5lh5r038CPkXvBHwXn6ZIXgYcK4kEz4YsEFmYg4DZgUcXjp51CGLEqyr2tyY-2Ocx7HMpoQMzs6A6VrupZ2mhbFG82hrZoKHNJ3rP3eUn9bbzsva0qar-niADVaOtimrelq6NF8dkfcsxewWNHCQL-l-eAs1Z2hc4S925ZgkK5O1uHB3pIrDXuLd799Sj5eZ-t8zpZvxSJ_XrIyFIljgQAtJN8AxDyDissUoyzTJfj9JpDIExnFAfhWVZsykRjqKoY0S6LEm1CHU_Iw5vam-x7QOrXrBtP6lyrwzAT3ABKvEqOqNJ21BrXqTXMAc1KCqzNaNaJVHq06o1WB9wSjx3ptW6P5S_7f9ANRRHwq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100105846</pqid></control><display><type>article</type><title>Extraction of GGO Candidate Regions on Thoracic CT Images using SuperVoxel-Based Graph Cuts for Healthcare Systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lu, Huimin ; Kondo, Masashi ; Li, Yujie ; Tan, JooKooi ; Kim, Hyoungseop ; Murakami, Seiichi ; Aoki, Takotoshi ; Kido, Shoji</creator><creatorcontrib>Lu, Huimin ; Kondo, Masashi ; Li, Yujie ; Tan, JooKooi ; Kim, Hyoungseop ; Murakami, Seiichi ; Aoki, Takotoshi ; Kido, Shoji</creatorcontrib><description>In this paper, we propose a method to reduce artifacts on temporal difference images by improving the conventional method using a non-rigid registration method for ground glass opacification (GGO), which is light in concentration and difficult to detect early. In this method, global matching, local matching, and 3D elastic matching are performed on the current image and past image, and an initial temporal difference image is generated. After that, we use an Iris filter, which is the gradient vector concentration degree filter, to determine the initial GGO candidate regions and perform segmentation using SuperVoxel and Graph Cuts in which a superpixel is extended to three dimensions for each region of interest. For each extracted region, a support vector machine (SVM) is used to reduce the over-segmentation. Finally, in the method that greatly reduces artifacts other than the remaining GGO candidate regions, Voxel Matching is applied to generate the final temporal difference image, emphasizing the GGO regions while reducing the artifact. The resulting ratio of artifacts to lung volume is 0.101 with an FWHM of 28.3, which is an improvement over the conventional method and shows the proposed method’s effectiveness.</description><identifier>ISSN: 1383-469X</identifier><identifier>EISSN: 1572-8153</identifier><identifier>DOI: 10.1007/s11036-018-1111-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Communications Engineering ; Computed tomography ; Computer Communication Networks ; Concentration gradient ; Electrical Engineering ; Engineering ; Image segmentation ; IT in Business ; Matching ; Medical imaging ; Networks ; Support vector machines</subject><ispartof>Mobile networks and applications, 2018-12, Vol.23 (6), p.1669-1679</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Mobile Networks and Applications is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-21af180baa509ad087e499fca1afb28e068452a068ddbc68e3fd5a796460baef3</citedby><cites>FETCH-LOGICAL-c316t-21af180baa509ad087e499fca1afb28e068452a068ddbc68e3fd5a796460baef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11036-018-1111-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11036-018-1111-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lu, Huimin</creatorcontrib><creatorcontrib>Kondo, Masashi</creatorcontrib><creatorcontrib>Li, Yujie</creatorcontrib><creatorcontrib>Tan, JooKooi</creatorcontrib><creatorcontrib>Kim, Hyoungseop</creatorcontrib><creatorcontrib>Murakami, Seiichi</creatorcontrib><creatorcontrib>Aoki, Takotoshi</creatorcontrib><creatorcontrib>Kido, Shoji</creatorcontrib><title>Extraction of GGO Candidate Regions on Thoracic CT Images using SuperVoxel-Based Graph Cuts for Healthcare Systems</title><title>Mobile networks and applications</title><addtitle>Mobile Netw Appl</addtitle><description>In this paper, we propose a method to reduce artifacts on temporal difference images by improving the conventional method using a non-rigid registration method for ground glass opacification (GGO), which is light in concentration and difficult to detect early. In this method, global matching, local matching, and 3D elastic matching are performed on the current image and past image, and an initial temporal difference image is generated. After that, we use an Iris filter, which is the gradient vector concentration degree filter, to determine the initial GGO candidate regions and perform segmentation using SuperVoxel and Graph Cuts in which a superpixel is extended to three dimensions for each region of interest. For each extracted region, a support vector machine (SVM) is used to reduce the over-segmentation. Finally, in the method that greatly reduces artifacts other than the remaining GGO candidate regions, Voxel Matching is applied to generate the final temporal difference image, emphasizing the GGO regions while reducing the artifact. The resulting ratio of artifacts to lung volume is 0.101 with an FWHM of 28.3, which is an improvement over the conventional method and shows the proposed method’s effectiveness.</description><subject>Communications Engineering</subject><subject>Computed tomography</subject><subject>Computer Communication Networks</subject><subject>Concentration gradient</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Image segmentation</subject><subject>IT in Business</subject><subject>Matching</subject><subject>Medical imaging</subject><subject>Networks</subject><subject>Support vector machines</subject><issn>1383-469X</issn><issn>1572-8153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9Lw0AQxRdRsFY_gLcFz6u7-bs5aqhpoSDYKt6WaTKbprRJ3N1A--3dEsGTc5lh5r038CPkXvBHwXn6ZIXgYcK4kEz4YsEFmYg4DZgUcXjp51CGLEqyr2tyY-2Ocx7HMpoQMzs6A6VrupZ2mhbFG82hrZoKHNJ3rP3eUn9bbzsva0qar-niADVaOtimrelq6NF8dkfcsxewWNHCQL-l-eAs1Z2hc4S925ZgkK5O1uHB3pIrDXuLd799Sj5eZ-t8zpZvxSJ_XrIyFIljgQAtJN8AxDyDissUoyzTJfj9JpDIExnFAfhWVZsykRjqKoY0S6LEm1CHU_Iw5vam-x7QOrXrBtP6lyrwzAT3ABKvEqOqNJ21BrXqTXMAc1KCqzNaNaJVHq06o1WB9wSjx3ptW6P5S_7f9ANRRHwq</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Lu, Huimin</creator><creator>Kondo, Masashi</creator><creator>Li, Yujie</creator><creator>Tan, JooKooi</creator><creator>Kim, Hyoungseop</creator><creator>Murakami, Seiichi</creator><creator>Aoki, Takotoshi</creator><creator>Kido, Shoji</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20181201</creationdate><title>Extraction of GGO Candidate Regions on Thoracic CT Images using SuperVoxel-Based Graph Cuts for Healthcare Systems</title><author>Lu, Huimin ; Kondo, Masashi ; Li, Yujie ; Tan, JooKooi ; Kim, Hyoungseop ; Murakami, Seiichi ; Aoki, Takotoshi ; Kido, Shoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-21af180baa509ad087e499fca1afb28e068452a068ddbc68e3fd5a796460baef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Communications Engineering</topic><topic>Computed tomography</topic><topic>Computer Communication Networks</topic><topic>Concentration gradient</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Image segmentation</topic><topic>IT in Business</topic><topic>Matching</topic><topic>Medical imaging</topic><topic>Networks</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Huimin</creatorcontrib><creatorcontrib>Kondo, Masashi</creatorcontrib><creatorcontrib>Li, Yujie</creatorcontrib><creatorcontrib>Tan, JooKooi</creatorcontrib><creatorcontrib>Kim, Hyoungseop</creatorcontrib><creatorcontrib>Murakami, Seiichi</creatorcontrib><creatorcontrib>Aoki, Takotoshi</creatorcontrib><creatorcontrib>Kido, Shoji</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Mobile networks and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Huimin</au><au>Kondo, Masashi</au><au>Li, Yujie</au><au>Tan, JooKooi</au><au>Kim, Hyoungseop</au><au>Murakami, Seiichi</au><au>Aoki, Takotoshi</au><au>Kido, Shoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraction of GGO Candidate Regions on Thoracic CT Images using SuperVoxel-Based Graph Cuts for Healthcare Systems</atitle><jtitle>Mobile networks and applications</jtitle><stitle>Mobile Netw Appl</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>23</volume><issue>6</issue><spage>1669</spage><epage>1679</epage><pages>1669-1679</pages><issn>1383-469X</issn><eissn>1572-8153</eissn><abstract>In this paper, we propose a method to reduce artifacts on temporal difference images by improving the conventional method using a non-rigid registration method for ground glass opacification (GGO), which is light in concentration and difficult to detect early. In this method, global matching, local matching, and 3D elastic matching are performed on the current image and past image, and an initial temporal difference image is generated. After that, we use an Iris filter, which is the gradient vector concentration degree filter, to determine the initial GGO candidate regions and perform segmentation using SuperVoxel and Graph Cuts in which a superpixel is extended to three dimensions for each region of interest. For each extracted region, a support vector machine (SVM) is used to reduce the over-segmentation. Finally, in the method that greatly reduces artifacts other than the remaining GGO candidate regions, Voxel Matching is applied to generate the final temporal difference image, emphasizing the GGO regions while reducing the artifact. The resulting ratio of artifacts to lung volume is 0.101 with an FWHM of 28.3, which is an improvement over the conventional method and shows the proposed method’s effectiveness.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11036-018-1111-2</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1383-469X
ispartof Mobile networks and applications, 2018-12, Vol.23 (6), p.1669-1679
issn 1383-469X
1572-8153
language eng
recordid cdi_proquest_journals_2100105846
source SpringerLink Journals - AutoHoldings
subjects Communications Engineering
Computed tomography
Computer Communication Networks
Concentration gradient
Electrical Engineering
Engineering
Image segmentation
IT in Business
Matching
Medical imaging
Networks
Support vector machines
title Extraction of GGO Candidate Regions on Thoracic CT Images using SuperVoxel-Based Graph Cuts for Healthcare Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraction%20of%20GGO%20Candidate%20Regions%20on%20Thoracic%20CT%20Images%20using%20SuperVoxel-Based%20Graph%20Cuts%20for%20Healthcare%20Systems&rft.jtitle=Mobile%20networks%20and%20applications&rft.au=Lu,%20Huimin&rft.date=2018-12-01&rft.volume=23&rft.issue=6&rft.spage=1669&rft.epage=1679&rft.pages=1669-1679&rft.issn=1383-469X&rft.eissn=1572-8153&rft_id=info:doi/10.1007/s11036-018-1111-2&rft_dat=%3Cproquest_cross%3E2100105846%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2100105846&rft_id=info:pmid/&rfr_iscdi=true