Stability Analysis of a Falling Film Flow Down a Plane with Sinusoidal Corrugations

The liquid viscous film falling down a vertical wall with sinusoidal relief is considered. The linear stability of steady-state flow with respect to time-periodic disturbances is studied using the Floquet theory. It is shown that in the case of applying corrugations the variation in the disturbance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid dynamics 2018-05, Vol.53 (3), p.372-384
Hauptverfasser: Mogilevskii, E. I., Shkadov, V. Ya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 384
container_issue 3
container_start_page 372
container_title Fluid dynamics
container_volume 53
creator Mogilevskii, E. I.
Shkadov, V. Ya
description The liquid viscous film falling down a vertical wall with sinusoidal relief is considered. The linear stability of steady-state flow with respect to time-periodic disturbances is studied using the Floquet theory. It is shown that in the case of applying corrugations the variation in the disturbance growth rate is proportional to the second power of their undulations. Depending on the relief parameters there exist two possibilities: the instability domain can expand or certain disturbances can be stabilized. The growth rates are obtained numerically and analytically in the approximation of low-amplitude corrugations. The development of waves from small disturbances is simulated within the framework of nonlinear equations and the formation of structures whose wavelength is significantly greater than the space relief period is found out.
doi_str_mv 10.1134/S0015462818030126
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2099969679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A722938887</galeid><sourcerecordid>A722938887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-bf3c3b6a287275035cab7e75bb066d9c84f1553d18520c83d987b0b9f146e77c3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA89Z8NF_HUl0VCgrV85LNZteUNKnJltJ_75YVPIjMYWDe9xlmXgBuMZphTOf3a4Qwm3MisUQUYcLPwAQzQQvJkDgHk5NcnPRLcJXzBiGkBCcTsF73unbe9Ue4CNofs8swtlDDUnvvQgdL57ew9PEAH-IhDMKb18HCg-s_4dqFfY6u0R4uY0r7TvcuhnwNLlrts7356VPwUT6-L5-L1evTy3KxKgxlrC_qlhpac02kIIIhyoyuhRWsrhHnjTJy3mLGaIMlI8hI2igpalSrFs-5FcLQKbgb9-5S_Nrb3FebuE_DF7kiSCnFFRdqcM1GV6e9rVxoY5-0GaqxW2disK0b5gtBiKJSSjEAeARMijkn21a75LY6HSuMqlPY1Z-wB4aMTB68obPp95T_oW-6U37r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099969679</pqid></control><display><type>article</type><title>Stability Analysis of a Falling Film Flow Down a Plane with Sinusoidal Corrugations</title><source>SpringerLink (Online service)</source><creator>Mogilevskii, E. I. ; Shkadov, V. Ya</creator><creatorcontrib>Mogilevskii, E. I. ; Shkadov, V. Ya</creatorcontrib><description>The liquid viscous film falling down a vertical wall with sinusoidal relief is considered. The linear stability of steady-state flow with respect to time-periodic disturbances is studied using the Floquet theory. It is shown that in the case of applying corrugations the variation in the disturbance growth rate is proportional to the second power of their undulations. Depending on the relief parameters there exist two possibilities: the instability domain can expand or certain disturbances can be stabilized. The growth rates are obtained numerically and analytically in the approximation of low-amplitude corrugations. The development of waves from small disturbances is simulated within the framework of nonlinear equations and the formation of structures whose wavelength is significantly greater than the space relief period is found out.</description><identifier>ISSN: 0015-4628</identifier><identifier>EISSN: 1573-8507</identifier><identifier>DOI: 10.1134/S0015462818030126</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical and Continuum Physics ; Classical Mechanics ; Computer simulation ; Disturbances ; Engineering Fluid Dynamics ; Equilibrium flow ; Falling ; Flow stability ; Fluid- and Aerodynamics ; Nonlinear equations ; Physics ; Physics and Astronomy ; Stability ; Stability analysis</subject><ispartof>Fluid dynamics, 2018-05, Vol.53 (3), p.372-384</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-bf3c3b6a287275035cab7e75bb066d9c84f1553d18520c83d987b0b9f146e77c3</citedby><cites>FETCH-LOGICAL-c355t-bf3c3b6a287275035cab7e75bb066d9c84f1553d18520c83d987b0b9f146e77c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0015462818030126$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0015462818030126$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mogilevskii, E. I.</creatorcontrib><creatorcontrib>Shkadov, V. Ya</creatorcontrib><title>Stability Analysis of a Falling Film Flow Down a Plane with Sinusoidal Corrugations</title><title>Fluid dynamics</title><addtitle>Fluid Dyn</addtitle><description>The liquid viscous film falling down a vertical wall with sinusoidal relief is considered. The linear stability of steady-state flow with respect to time-periodic disturbances is studied using the Floquet theory. It is shown that in the case of applying corrugations the variation in the disturbance growth rate is proportional to the second power of their undulations. Depending on the relief parameters there exist two possibilities: the instability domain can expand or certain disturbances can be stabilized. The growth rates are obtained numerically and analytically in the approximation of low-amplitude corrugations. The development of waves from small disturbances is simulated within the framework of nonlinear equations and the formation of structures whose wavelength is significantly greater than the space relief period is found out.</description><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Disturbances</subject><subject>Engineering Fluid Dynamics</subject><subject>Equilibrium flow</subject><subject>Falling</subject><subject>Flow stability</subject><subject>Fluid- and Aerodynamics</subject><subject>Nonlinear equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Stability</subject><subject>Stability analysis</subject><issn>0015-4628</issn><issn>1573-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA89Z8NF_HUl0VCgrV85LNZteUNKnJltJ_75YVPIjMYWDe9xlmXgBuMZphTOf3a4Qwm3MisUQUYcLPwAQzQQvJkDgHk5NcnPRLcJXzBiGkBCcTsF73unbe9Ue4CNofs8swtlDDUnvvQgdL57ew9PEAH-IhDMKb18HCg-s_4dqFfY6u0R4uY0r7TvcuhnwNLlrts7356VPwUT6-L5-L1evTy3KxKgxlrC_qlhpac02kIIIhyoyuhRWsrhHnjTJy3mLGaIMlI8hI2igpalSrFs-5FcLQKbgb9-5S_Nrb3FebuE_DF7kiSCnFFRdqcM1GV6e9rVxoY5-0GaqxW2disK0b5gtBiKJSSjEAeARMijkn21a75LY6HSuMqlPY1Z-wB4aMTB68obPp95T_oW-6U37r</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Mogilevskii, E. I.</creator><creator>Shkadov, V. Ya</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180501</creationdate><title>Stability Analysis of a Falling Film Flow Down a Plane with Sinusoidal Corrugations</title><author>Mogilevskii, E. I. ; Shkadov, V. Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-bf3c3b6a287275035cab7e75bb066d9c84f1553d18520c83d987b0b9f146e77c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Disturbances</topic><topic>Engineering Fluid Dynamics</topic><topic>Equilibrium flow</topic><topic>Falling</topic><topic>Flow stability</topic><topic>Fluid- and Aerodynamics</topic><topic>Nonlinear equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Stability</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mogilevskii, E. I.</creatorcontrib><creatorcontrib>Shkadov, V. Ya</creatorcontrib><collection>CrossRef</collection><jtitle>Fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mogilevskii, E. I.</au><au>Shkadov, V. Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability Analysis of a Falling Film Flow Down a Plane with Sinusoidal Corrugations</atitle><jtitle>Fluid dynamics</jtitle><stitle>Fluid Dyn</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>53</volume><issue>3</issue><spage>372</spage><epage>384</epage><pages>372-384</pages><issn>0015-4628</issn><eissn>1573-8507</eissn><abstract>The liquid viscous film falling down a vertical wall with sinusoidal relief is considered. The linear stability of steady-state flow with respect to time-periodic disturbances is studied using the Floquet theory. It is shown that in the case of applying corrugations the variation in the disturbance growth rate is proportional to the second power of their undulations. Depending on the relief parameters there exist two possibilities: the instability domain can expand or certain disturbances can be stabilized. The growth rates are obtained numerically and analytically in the approximation of low-amplitude corrugations. The development of waves from small disturbances is simulated within the framework of nonlinear equations and the formation of structures whose wavelength is significantly greater than the space relief period is found out.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0015462818030126</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0015-4628
ispartof Fluid dynamics, 2018-05, Vol.53 (3), p.372-384
issn 0015-4628
1573-8507
language eng
recordid cdi_proquest_journals_2099969679
source SpringerLink (Online service)
subjects Classical and Continuum Physics
Classical Mechanics
Computer simulation
Disturbances
Engineering Fluid Dynamics
Equilibrium flow
Falling
Flow stability
Fluid- and Aerodynamics
Nonlinear equations
Physics
Physics and Astronomy
Stability
Stability analysis
title Stability Analysis of a Falling Film Flow Down a Plane with Sinusoidal Corrugations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20Analysis%20of%20a%20Falling%20Film%20Flow%20Down%20a%20Plane%20with%20Sinusoidal%20Corrugations&rft.jtitle=Fluid%20dynamics&rft.au=Mogilevskii,%20E.%20I.&rft.date=2018-05-01&rft.volume=53&rft.issue=3&rft.spage=372&rft.epage=384&rft.pages=372-384&rft.issn=0015-4628&rft.eissn=1573-8507&rft_id=info:doi/10.1134/S0015462818030126&rft_dat=%3Cgale_proqu%3EA722938887%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099969679&rft_id=info:pmid/&rft_galeid=A722938887&rfr_iscdi=true