Stability Analysis of a Falling Film Flow Down a Plane with Sinusoidal Corrugations
The liquid viscous film falling down a vertical wall with sinusoidal relief is considered. The linear stability of steady-state flow with respect to time-periodic disturbances is studied using the Floquet theory. It is shown that in the case of applying corrugations the variation in the disturbance...
Gespeichert in:
Veröffentlicht in: | Fluid dynamics 2018-05, Vol.53 (3), p.372-384 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 384 |
---|---|
container_issue | 3 |
container_start_page | 372 |
container_title | Fluid dynamics |
container_volume | 53 |
creator | Mogilevskii, E. I. Shkadov, V. Ya |
description | The liquid viscous film falling down a vertical wall with sinusoidal relief is considered. The linear stability of steady-state flow with respect to time-periodic disturbances is studied using the Floquet theory. It is shown that in the case of applying corrugations the variation in the disturbance growth rate is proportional to the second power of their undulations. Depending on the relief parameters there exist two possibilities: the instability domain can expand or certain disturbances can be stabilized. The growth rates are obtained numerically and analytically in the approximation of low-amplitude corrugations. The development of waves from small disturbances is simulated within the framework of nonlinear equations and the formation of structures whose wavelength is significantly greater than the space relief period is found out. |
doi_str_mv | 10.1134/S0015462818030126 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2099969679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A722938887</galeid><sourcerecordid>A722938887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-bf3c3b6a287275035cab7e75bb066d9c84f1553d18520c83d987b0b9f146e77c3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA89Z8NF_HUl0VCgrV85LNZteUNKnJltJ_75YVPIjMYWDe9xlmXgBuMZphTOf3a4Qwm3MisUQUYcLPwAQzQQvJkDgHk5NcnPRLcJXzBiGkBCcTsF73unbe9Ue4CNofs8swtlDDUnvvQgdL57ew9PEAH-IhDMKb18HCg-s_4dqFfY6u0R4uY0r7TvcuhnwNLlrts7356VPwUT6-L5-L1evTy3KxKgxlrC_qlhpac02kIIIhyoyuhRWsrhHnjTJy3mLGaIMlI8hI2igpalSrFs-5FcLQKbgb9-5S_Nrb3FebuE_DF7kiSCnFFRdqcM1GV6e9rVxoY5-0GaqxW2disK0b5gtBiKJSSjEAeARMijkn21a75LY6HSuMqlPY1Z-wB4aMTB68obPp95T_oW-6U37r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099969679</pqid></control><display><type>article</type><title>Stability Analysis of a Falling Film Flow Down a Plane with Sinusoidal Corrugations</title><source>SpringerLink (Online service)</source><creator>Mogilevskii, E. I. ; Shkadov, V. Ya</creator><creatorcontrib>Mogilevskii, E. I. ; Shkadov, V. Ya</creatorcontrib><description>The liquid viscous film falling down a vertical wall with sinusoidal relief is considered. The linear stability of steady-state flow with respect to time-periodic disturbances is studied using the Floquet theory. It is shown that in the case of applying corrugations the variation in the disturbance growth rate is proportional to the second power of their undulations. Depending on the relief parameters there exist two possibilities: the instability domain can expand or certain disturbances can be stabilized. The growth rates are obtained numerically and analytically in the approximation of low-amplitude corrugations. The development of waves from small disturbances is simulated within the framework of nonlinear equations and the formation of structures whose wavelength is significantly greater than the space relief period is found out.</description><identifier>ISSN: 0015-4628</identifier><identifier>EISSN: 1573-8507</identifier><identifier>DOI: 10.1134/S0015462818030126</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical and Continuum Physics ; Classical Mechanics ; Computer simulation ; Disturbances ; Engineering Fluid Dynamics ; Equilibrium flow ; Falling ; Flow stability ; Fluid- and Aerodynamics ; Nonlinear equations ; Physics ; Physics and Astronomy ; Stability ; Stability analysis</subject><ispartof>Fluid dynamics, 2018-05, Vol.53 (3), p.372-384</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-bf3c3b6a287275035cab7e75bb066d9c84f1553d18520c83d987b0b9f146e77c3</citedby><cites>FETCH-LOGICAL-c355t-bf3c3b6a287275035cab7e75bb066d9c84f1553d18520c83d987b0b9f146e77c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0015462818030126$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0015462818030126$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mogilevskii, E. I.</creatorcontrib><creatorcontrib>Shkadov, V. Ya</creatorcontrib><title>Stability Analysis of a Falling Film Flow Down a Plane with Sinusoidal Corrugations</title><title>Fluid dynamics</title><addtitle>Fluid Dyn</addtitle><description>The liquid viscous film falling down a vertical wall with sinusoidal relief is considered. The linear stability of steady-state flow with respect to time-periodic disturbances is studied using the Floquet theory. It is shown that in the case of applying corrugations the variation in the disturbance growth rate is proportional to the second power of their undulations. Depending on the relief parameters there exist two possibilities: the instability domain can expand or certain disturbances can be stabilized. The growth rates are obtained numerically and analytically in the approximation of low-amplitude corrugations. The development of waves from small disturbances is simulated within the framework of nonlinear equations and the formation of structures whose wavelength is significantly greater than the space relief period is found out.</description><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Disturbances</subject><subject>Engineering Fluid Dynamics</subject><subject>Equilibrium flow</subject><subject>Falling</subject><subject>Flow stability</subject><subject>Fluid- and Aerodynamics</subject><subject>Nonlinear equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Stability</subject><subject>Stability analysis</subject><issn>0015-4628</issn><issn>1573-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA89Z8NF_HUl0VCgrV85LNZteUNKnJltJ_75YVPIjMYWDe9xlmXgBuMZphTOf3a4Qwm3MisUQUYcLPwAQzQQvJkDgHk5NcnPRLcJXzBiGkBCcTsF73unbe9Ue4CNofs8swtlDDUnvvQgdL57ew9PEAH-IhDMKb18HCg-s_4dqFfY6u0R4uY0r7TvcuhnwNLlrts7356VPwUT6-L5-L1evTy3KxKgxlrC_qlhpac02kIIIhyoyuhRWsrhHnjTJy3mLGaIMlI8hI2igpalSrFs-5FcLQKbgb9-5S_Nrb3FebuE_DF7kiSCnFFRdqcM1GV6e9rVxoY5-0GaqxW2disK0b5gtBiKJSSjEAeARMijkn21a75LY6HSuMqlPY1Z-wB4aMTB68obPp95T_oW-6U37r</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Mogilevskii, E. I.</creator><creator>Shkadov, V. Ya</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180501</creationdate><title>Stability Analysis of a Falling Film Flow Down a Plane with Sinusoidal Corrugations</title><author>Mogilevskii, E. I. ; Shkadov, V. Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-bf3c3b6a287275035cab7e75bb066d9c84f1553d18520c83d987b0b9f146e77c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Disturbances</topic><topic>Engineering Fluid Dynamics</topic><topic>Equilibrium flow</topic><topic>Falling</topic><topic>Flow stability</topic><topic>Fluid- and Aerodynamics</topic><topic>Nonlinear equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Stability</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mogilevskii, E. I.</creatorcontrib><creatorcontrib>Shkadov, V. Ya</creatorcontrib><collection>CrossRef</collection><jtitle>Fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mogilevskii, E. I.</au><au>Shkadov, V. Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability Analysis of a Falling Film Flow Down a Plane with Sinusoidal Corrugations</atitle><jtitle>Fluid dynamics</jtitle><stitle>Fluid Dyn</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>53</volume><issue>3</issue><spage>372</spage><epage>384</epage><pages>372-384</pages><issn>0015-4628</issn><eissn>1573-8507</eissn><abstract>The liquid viscous film falling down a vertical wall with sinusoidal relief is considered. The linear stability of steady-state flow with respect to time-periodic disturbances is studied using the Floquet theory. It is shown that in the case of applying corrugations the variation in the disturbance growth rate is proportional to the second power of their undulations. Depending on the relief parameters there exist two possibilities: the instability domain can expand or certain disturbances can be stabilized. The growth rates are obtained numerically and analytically in the approximation of low-amplitude corrugations. The development of waves from small disturbances is simulated within the framework of nonlinear equations and the formation of structures whose wavelength is significantly greater than the space relief period is found out.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0015462818030126</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0015-4628 |
ispartof | Fluid dynamics, 2018-05, Vol.53 (3), p.372-384 |
issn | 0015-4628 1573-8507 |
language | eng |
recordid | cdi_proquest_journals_2099969679 |
source | SpringerLink (Online service) |
subjects | Classical and Continuum Physics Classical Mechanics Computer simulation Disturbances Engineering Fluid Dynamics Equilibrium flow Falling Flow stability Fluid- and Aerodynamics Nonlinear equations Physics Physics and Astronomy Stability Stability analysis |
title | Stability Analysis of a Falling Film Flow Down a Plane with Sinusoidal Corrugations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20Analysis%20of%20a%20Falling%20Film%20Flow%20Down%20a%20Plane%20with%20Sinusoidal%20Corrugations&rft.jtitle=Fluid%20dynamics&rft.au=Mogilevskii,%20E.%20I.&rft.date=2018-05-01&rft.volume=53&rft.issue=3&rft.spage=372&rft.epage=384&rft.pages=372-384&rft.issn=0015-4628&rft.eissn=1573-8507&rft_id=info:doi/10.1134/S0015462818030126&rft_dat=%3Cgale_proqu%3EA722938887%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099969679&rft_id=info:pmid/&rft_galeid=A722938887&rfr_iscdi=true |