Propagating Stationary Surface Potential Waves in a Deep Ideal Fluid

A new exact solution of the problem for propagating stationary potential wave of an arbitrary amplitude in a deep ideal homogeneous fluid was constructed. Calculated wavy surface is represented by transcendental Lambert’s complex functions. For a physical interpretation of the results real linear co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources 2018-09, Vol.45 (5), p.719-727
Hauptverfasser: Kistovich, A. V., Chashechkin, Yu. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 727
container_issue 5
container_start_page 719
container_title Water resources
container_volume 45
creator Kistovich, A. V.
Chashechkin, Yu. D.
description A new exact solution of the problem for propagating stationary potential wave of an arbitrary amplitude in a deep ideal homogeneous fluid was constructed. Calculated wavy surface is represented by transcendental Lambert’s complex functions. For a physical interpretation of the results real linear combinations of the solutions were formed. The range of the wave steepness values, in which the real sum of constructed comprehensive solutions describes waves with smooth crests, is defined. In the limiting case of waves with small but finite amplitude as well as infinitesimal amplitude, the real combinations of the solutions are transferred in classical nonlinear and linear asymptotic Stokes expressions. Another real combination of constructed complex solutions describing waves with cusped crests do not fall within the range of conditions for the existence of stationary waves.
doi_str_mv 10.1134/S0097807818050111
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2099793896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099793896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2311-363f019b1a671e5233a2f5c04c1b7d9800fb7a9ca40f16e97e73ee4e3cfd84433</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHPqzObdJMcpfWjULBQRW9Lmp2ULXV3TXYF_70pFTyIpwfzPob3GLtEuEYU8mYFYJQGpVHDBBDxiI2wAJ0JKd-O2WhPZ3v-lJ3FuAVAAG1GbLYMbWc3tq-bDV_1CdvGhi--GoK3jviy7anpa7vjr_aTIq8bbvmMqOPzitL1fjfU1Tk78XYX6eIHx-zl_u55-pgtnh7m09tF5nKBmIlCeECzRlsopEkuhM39xIF0uFaV0QB-raxxVoLHgowiJYgkCecrLaUQY3Z1yO1C-zFQ7MttO4QmvSxzMEYZoU2RVHhQudDGGMiXXajfU6kSodyPVf4ZK3nygycmbbOh8Jv8v-kbtRJpwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099793896</pqid></control><display><type>article</type><title>Propagating Stationary Surface Potential Waves in a Deep Ideal Fluid</title><source>SpringerNature Journals</source><creator>Kistovich, A. V. ; Chashechkin, Yu. D.</creator><creatorcontrib>Kistovich, A. V. ; Chashechkin, Yu. D.</creatorcontrib><description>A new exact solution of the problem for propagating stationary potential wave of an arbitrary amplitude in a deep ideal homogeneous fluid was constructed. Calculated wavy surface is represented by transcendental Lambert’s complex functions. For a physical interpretation of the results real linear combinations of the solutions were formed. The range of the wave steepness values, in which the real sum of constructed comprehensive solutions describes waves with smooth crests, is defined. In the limiting case of waves with small but finite amplitude as well as infinitesimal amplitude, the real combinations of the solutions are transferred in classical nonlinear and linear asymptotic Stokes expressions. Another real combination of constructed complex solutions describing waves with cusped crests do not fall within the range of conditions for the existence of stationary waves.</description><identifier>ISSN: 0097-8078</identifier><identifier>EISSN: 1608-344X</identifier><identifier>DOI: 10.1134/S0097807818050111</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Amplitude ; Amplitudes ; Aquatic Pollution ; Boundary conditions ; Earth and Environmental Science ; Earth Sciences ; Fluid dynamics ; Gravitational waves ; Gravity ; Hydrogeology ; Hydrology/Water Resources ; Hydrophysical Processes ; Ideal fluids ; Laboratories ; Mathematical analysis ; Numerical analysis ; Slopes ; Solutions ; Standing waves ; Surface potential ; Velocity ; Waste Water Technology ; Water Management ; Water Pollution Control ; Wave propagation ; Wave slope ; Waves</subject><ispartof>Water resources, 2018-09, Vol.45 (5), p.719-727</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Water Resources is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2311-363f019b1a671e5233a2f5c04c1b7d9800fb7a9ca40f16e97e73ee4e3cfd84433</citedby><cites>FETCH-LOGICAL-c2311-363f019b1a671e5233a2f5c04c1b7d9800fb7a9ca40f16e97e73ee4e3cfd84433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0097807818050111$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0097807818050111$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kistovich, A. V.</creatorcontrib><creatorcontrib>Chashechkin, Yu. D.</creatorcontrib><title>Propagating Stationary Surface Potential Waves in a Deep Ideal Fluid</title><title>Water resources</title><addtitle>Water Resour</addtitle><description>A new exact solution of the problem for propagating stationary potential wave of an arbitrary amplitude in a deep ideal homogeneous fluid was constructed. Calculated wavy surface is represented by transcendental Lambert’s complex functions. For a physical interpretation of the results real linear combinations of the solutions were formed. The range of the wave steepness values, in which the real sum of constructed comprehensive solutions describes waves with smooth crests, is defined. In the limiting case of waves with small but finite amplitude as well as infinitesimal amplitude, the real combinations of the solutions are transferred in classical nonlinear and linear asymptotic Stokes expressions. Another real combination of constructed complex solutions describing waves with cusped crests do not fall within the range of conditions for the existence of stationary waves.</description><subject>Amplitude</subject><subject>Amplitudes</subject><subject>Aquatic Pollution</subject><subject>Boundary conditions</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluid dynamics</subject><subject>Gravitational waves</subject><subject>Gravity</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Hydrophysical Processes</subject><subject>Ideal fluids</subject><subject>Laboratories</subject><subject>Mathematical analysis</subject><subject>Numerical analysis</subject><subject>Slopes</subject><subject>Solutions</subject><subject>Standing waves</subject><subject>Surface potential</subject><subject>Velocity</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Wave propagation</subject><subject>Wave slope</subject><subject>Waves</subject><issn>0097-8078</issn><issn>1608-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UE1LAzEQDaJgrf4AbwHPqzObdJMcpfWjULBQRW9Lmp2ULXV3TXYF_70pFTyIpwfzPob3GLtEuEYU8mYFYJQGpVHDBBDxiI2wAJ0JKd-O2WhPZ3v-lJ3FuAVAAG1GbLYMbWc3tq-bDV_1CdvGhi--GoK3jviy7anpa7vjr_aTIq8bbvmMqOPzitL1fjfU1Tk78XYX6eIHx-zl_u55-pgtnh7m09tF5nKBmIlCeECzRlsopEkuhM39xIF0uFaV0QB-raxxVoLHgowiJYgkCecrLaUQY3Z1yO1C-zFQ7MttO4QmvSxzMEYZoU2RVHhQudDGGMiXXajfU6kSodyPVf4ZK3nygycmbbOh8Jv8v-kbtRJpwg</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Kistovich, A. V.</creator><creator>Chashechkin, Yu. D.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20180901</creationdate><title>Propagating Stationary Surface Potential Waves in a Deep Ideal Fluid</title><author>Kistovich, A. V. ; Chashechkin, Yu. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2311-363f019b1a671e5233a2f5c04c1b7d9800fb7a9ca40f16e97e73ee4e3cfd84433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amplitude</topic><topic>Amplitudes</topic><topic>Aquatic Pollution</topic><topic>Boundary conditions</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluid dynamics</topic><topic>Gravitational waves</topic><topic>Gravity</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Hydrophysical Processes</topic><topic>Ideal fluids</topic><topic>Laboratories</topic><topic>Mathematical analysis</topic><topic>Numerical analysis</topic><topic>Slopes</topic><topic>Solutions</topic><topic>Standing waves</topic><topic>Surface potential</topic><topic>Velocity</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Wave propagation</topic><topic>Wave slope</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kistovich, A. V.</creatorcontrib><creatorcontrib>Chashechkin, Yu. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kistovich, A. V.</au><au>Chashechkin, Yu. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagating Stationary Surface Potential Waves in a Deep Ideal Fluid</atitle><jtitle>Water resources</jtitle><stitle>Water Resour</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>45</volume><issue>5</issue><spage>719</spage><epage>727</epage><pages>719-727</pages><issn>0097-8078</issn><eissn>1608-344X</eissn><abstract>A new exact solution of the problem for propagating stationary potential wave of an arbitrary amplitude in a deep ideal homogeneous fluid was constructed. Calculated wavy surface is represented by transcendental Lambert’s complex functions. For a physical interpretation of the results real linear combinations of the solutions were formed. The range of the wave steepness values, in which the real sum of constructed comprehensive solutions describes waves with smooth crests, is defined. In the limiting case of waves with small but finite amplitude as well as infinitesimal amplitude, the real combinations of the solutions are transferred in classical nonlinear and linear asymptotic Stokes expressions. Another real combination of constructed complex solutions describing waves with cusped crests do not fall within the range of conditions for the existence of stationary waves.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0097807818050111</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-8078
ispartof Water resources, 2018-09, Vol.45 (5), p.719-727
issn 0097-8078
1608-344X
language eng
recordid cdi_proquest_journals_2099793896
source SpringerNature Journals
subjects Amplitude
Amplitudes
Aquatic Pollution
Boundary conditions
Earth and Environmental Science
Earth Sciences
Fluid dynamics
Gravitational waves
Gravity
Hydrogeology
Hydrology/Water Resources
Hydrophysical Processes
Ideal fluids
Laboratories
Mathematical analysis
Numerical analysis
Slopes
Solutions
Standing waves
Surface potential
Velocity
Waste Water Technology
Water Management
Water Pollution Control
Wave propagation
Wave slope
Waves
title Propagating Stationary Surface Potential Waves in a Deep Ideal Fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A00%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagating%20Stationary%20Surface%20Potential%20Waves%20in%20a%20Deep%20Ideal%20Fluid&rft.jtitle=Water%20resources&rft.au=Kistovich,%20A.%20V.&rft.date=2018-09-01&rft.volume=45&rft.issue=5&rft.spage=719&rft.epage=727&rft.pages=719-727&rft.issn=0097-8078&rft.eissn=1608-344X&rft_id=info:doi/10.1134/S0097807818050111&rft_dat=%3Cproquest_cross%3E2099793896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099793896&rft_id=info:pmid/&rfr_iscdi=true