Propagating Stationary Surface Potential Waves in a Deep Ideal Fluid
A new exact solution of the problem for propagating stationary potential wave of an arbitrary amplitude in a deep ideal homogeneous fluid was constructed. Calculated wavy surface is represented by transcendental Lambert’s complex functions. For a physical interpretation of the results real linear co...
Gespeichert in:
Veröffentlicht in: | Water resources 2018-09, Vol.45 (5), p.719-727 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 727 |
---|---|
container_issue | 5 |
container_start_page | 719 |
container_title | Water resources |
container_volume | 45 |
creator | Kistovich, A. V. Chashechkin, Yu. D. |
description | A new exact solution of the problem for propagating stationary potential wave of an arbitrary amplitude in a deep ideal homogeneous fluid was constructed. Calculated wavy surface is represented by transcendental Lambert’s complex functions. For a physical interpretation of the results real linear combinations of the solutions were formed. The range of the wave steepness values, in which the real sum of constructed comprehensive solutions describes waves with smooth crests, is defined. In the limiting case of waves with small but finite amplitude as well as infinitesimal amplitude, the real combinations of the solutions are transferred in classical nonlinear and linear asymptotic Stokes expressions. Another real combination of constructed complex solutions describing waves with cusped crests do not fall within the range of conditions for the existence of stationary waves. |
doi_str_mv | 10.1134/S0097807818050111 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2099793896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099793896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2311-363f019b1a671e5233a2f5c04c1b7d9800fb7a9ca40f16e97e73ee4e3cfd84433</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHPqzObdJMcpfWjULBQRW9Lmp2ULXV3TXYF_70pFTyIpwfzPob3GLtEuEYU8mYFYJQGpVHDBBDxiI2wAJ0JKd-O2WhPZ3v-lJ3FuAVAAG1GbLYMbWc3tq-bDV_1CdvGhi--GoK3jviy7anpa7vjr_aTIq8bbvmMqOPzitL1fjfU1Tk78XYX6eIHx-zl_u55-pgtnh7m09tF5nKBmIlCeECzRlsopEkuhM39xIF0uFaV0QB-raxxVoLHgowiJYgkCecrLaUQY3Z1yO1C-zFQ7MttO4QmvSxzMEYZoU2RVHhQudDGGMiXXajfU6kSodyPVf4ZK3nygycmbbOh8Jv8v-kbtRJpwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099793896</pqid></control><display><type>article</type><title>Propagating Stationary Surface Potential Waves in a Deep Ideal Fluid</title><source>SpringerNature Journals</source><creator>Kistovich, A. V. ; Chashechkin, Yu. D.</creator><creatorcontrib>Kistovich, A. V. ; Chashechkin, Yu. D.</creatorcontrib><description>A new exact solution of the problem for propagating stationary potential wave of an arbitrary amplitude in a deep ideal homogeneous fluid was constructed. Calculated wavy surface is represented by transcendental Lambert’s complex functions. For a physical interpretation of the results real linear combinations of the solutions were formed. The range of the wave steepness values, in which the real sum of constructed comprehensive solutions describes waves with smooth crests, is defined. In the limiting case of waves with small but finite amplitude as well as infinitesimal amplitude, the real combinations of the solutions are transferred in classical nonlinear and linear asymptotic Stokes expressions. Another real combination of constructed complex solutions describing waves with cusped crests do not fall within the range of conditions for the existence of stationary waves.</description><identifier>ISSN: 0097-8078</identifier><identifier>EISSN: 1608-344X</identifier><identifier>DOI: 10.1134/S0097807818050111</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Amplitude ; Amplitudes ; Aquatic Pollution ; Boundary conditions ; Earth and Environmental Science ; Earth Sciences ; Fluid dynamics ; Gravitational waves ; Gravity ; Hydrogeology ; Hydrology/Water Resources ; Hydrophysical Processes ; Ideal fluids ; Laboratories ; Mathematical analysis ; Numerical analysis ; Slopes ; Solutions ; Standing waves ; Surface potential ; Velocity ; Waste Water Technology ; Water Management ; Water Pollution Control ; Wave propagation ; Wave slope ; Waves</subject><ispartof>Water resources, 2018-09, Vol.45 (5), p.719-727</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Water Resources is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2311-363f019b1a671e5233a2f5c04c1b7d9800fb7a9ca40f16e97e73ee4e3cfd84433</citedby><cites>FETCH-LOGICAL-c2311-363f019b1a671e5233a2f5c04c1b7d9800fb7a9ca40f16e97e73ee4e3cfd84433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0097807818050111$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0097807818050111$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kistovich, A. V.</creatorcontrib><creatorcontrib>Chashechkin, Yu. D.</creatorcontrib><title>Propagating Stationary Surface Potential Waves in a Deep Ideal Fluid</title><title>Water resources</title><addtitle>Water Resour</addtitle><description>A new exact solution of the problem for propagating stationary potential wave of an arbitrary amplitude in a deep ideal homogeneous fluid was constructed. Calculated wavy surface is represented by transcendental Lambert’s complex functions. For a physical interpretation of the results real linear combinations of the solutions were formed. The range of the wave steepness values, in which the real sum of constructed comprehensive solutions describes waves with smooth crests, is defined. In the limiting case of waves with small but finite amplitude as well as infinitesimal amplitude, the real combinations of the solutions are transferred in classical nonlinear and linear asymptotic Stokes expressions. Another real combination of constructed complex solutions describing waves with cusped crests do not fall within the range of conditions for the existence of stationary waves.</description><subject>Amplitude</subject><subject>Amplitudes</subject><subject>Aquatic Pollution</subject><subject>Boundary conditions</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluid dynamics</subject><subject>Gravitational waves</subject><subject>Gravity</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Hydrophysical Processes</subject><subject>Ideal fluids</subject><subject>Laboratories</subject><subject>Mathematical analysis</subject><subject>Numerical analysis</subject><subject>Slopes</subject><subject>Solutions</subject><subject>Standing waves</subject><subject>Surface potential</subject><subject>Velocity</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Wave propagation</subject><subject>Wave slope</subject><subject>Waves</subject><issn>0097-8078</issn><issn>1608-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UE1LAzEQDaJgrf4AbwHPqzObdJMcpfWjULBQRW9Lmp2ULXV3TXYF_70pFTyIpwfzPob3GLtEuEYU8mYFYJQGpVHDBBDxiI2wAJ0JKd-O2WhPZ3v-lJ3FuAVAAG1GbLYMbWc3tq-bDV_1CdvGhi--GoK3jviy7anpa7vjr_aTIq8bbvmMqOPzitL1fjfU1Tk78XYX6eIHx-zl_u55-pgtnh7m09tF5nKBmIlCeECzRlsopEkuhM39xIF0uFaV0QB-raxxVoLHgowiJYgkCecrLaUQY3Z1yO1C-zFQ7MttO4QmvSxzMEYZoU2RVHhQudDGGMiXXajfU6kSodyPVf4ZK3nygycmbbOh8Jv8v-kbtRJpwg</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Kistovich, A. V.</creator><creator>Chashechkin, Yu. D.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20180901</creationdate><title>Propagating Stationary Surface Potential Waves in a Deep Ideal Fluid</title><author>Kistovich, A. V. ; Chashechkin, Yu. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2311-363f019b1a671e5233a2f5c04c1b7d9800fb7a9ca40f16e97e73ee4e3cfd84433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amplitude</topic><topic>Amplitudes</topic><topic>Aquatic Pollution</topic><topic>Boundary conditions</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluid dynamics</topic><topic>Gravitational waves</topic><topic>Gravity</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Hydrophysical Processes</topic><topic>Ideal fluids</topic><topic>Laboratories</topic><topic>Mathematical analysis</topic><topic>Numerical analysis</topic><topic>Slopes</topic><topic>Solutions</topic><topic>Standing waves</topic><topic>Surface potential</topic><topic>Velocity</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Wave propagation</topic><topic>Wave slope</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kistovich, A. V.</creatorcontrib><creatorcontrib>Chashechkin, Yu. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kistovich, A. V.</au><au>Chashechkin, Yu. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagating Stationary Surface Potential Waves in a Deep Ideal Fluid</atitle><jtitle>Water resources</jtitle><stitle>Water Resour</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>45</volume><issue>5</issue><spage>719</spage><epage>727</epage><pages>719-727</pages><issn>0097-8078</issn><eissn>1608-344X</eissn><abstract>A new exact solution of the problem for propagating stationary potential wave of an arbitrary amplitude in a deep ideal homogeneous fluid was constructed. Calculated wavy surface is represented by transcendental Lambert’s complex functions. For a physical interpretation of the results real linear combinations of the solutions were formed. The range of the wave steepness values, in which the real sum of constructed comprehensive solutions describes waves with smooth crests, is defined. In the limiting case of waves with small but finite amplitude as well as infinitesimal amplitude, the real combinations of the solutions are transferred in classical nonlinear and linear asymptotic Stokes expressions. Another real combination of constructed complex solutions describing waves with cusped crests do not fall within the range of conditions for the existence of stationary waves.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0097807818050111</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-8078 |
ispartof | Water resources, 2018-09, Vol.45 (5), p.719-727 |
issn | 0097-8078 1608-344X |
language | eng |
recordid | cdi_proquest_journals_2099793896 |
source | SpringerNature Journals |
subjects | Amplitude Amplitudes Aquatic Pollution Boundary conditions Earth and Environmental Science Earth Sciences Fluid dynamics Gravitational waves Gravity Hydrogeology Hydrology/Water Resources Hydrophysical Processes Ideal fluids Laboratories Mathematical analysis Numerical analysis Slopes Solutions Standing waves Surface potential Velocity Waste Water Technology Water Management Water Pollution Control Wave propagation Wave slope Waves |
title | Propagating Stationary Surface Potential Waves in a Deep Ideal Fluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A00%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagating%20Stationary%20Surface%20Potential%20Waves%20in%20a%20Deep%20Ideal%20Fluid&rft.jtitle=Water%20resources&rft.au=Kistovich,%20A.%20V.&rft.date=2018-09-01&rft.volume=45&rft.issue=5&rft.spage=719&rft.epage=727&rft.pages=719-727&rft.issn=0097-8078&rft.eissn=1608-344X&rft_id=info:doi/10.1134/S0097807818050111&rft_dat=%3Cproquest_cross%3E2099793896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099793896&rft_id=info:pmid/&rfr_iscdi=true |