Machine learning models of plastic flow based on representation theory

We use machine learning (ML) to infer stress and plastic flow rules using data from repre- sentative polycrystalline simulations. In particular, we use so-called deep (multilayer) neural networks (NN) to represent the two response functions. The ML process does not choose ap- propriate inputs or out...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-09
Hauptverfasser: Jones, Reese E, Templeton, Jeremy A, Sanders, Clay M, Ostien, Jakob T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jones, Reese E
Templeton, Jeremy A
Sanders, Clay M
Ostien, Jakob T
description We use machine learning (ML) to infer stress and plastic flow rules using data from repre- sentative polycrystalline simulations. In particular, we use so-called deep (multilayer) neural networks (NN) to represent the two response functions. The ML process does not choose ap- propriate inputs or outputs, rather it is trained on selected inputs and output. Likewise, its discrimination of features is crucially connected to the chosen input-output map. Hence, we draw upon classical constitutive modeling to select inputs and enforce well-accepted symmetries and other properties. With these developments, we enable rapid model building in real-time with experiments, and guide data collection and feature discovery.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2099743971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099743971</sourcerecordid><originalsourceid>FETCH-proquest_journals_20997439713</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMgWLT_8MC5kCattbNYXNzcS2xfbEpMal6K-Pd28AOcjuNuxRIhZZ4dCyE2LCUaOefiUImylAlrrqobjEOwqIIz7gFP36Ml8BomqyiaDrT1b7grwh68g4BTQEIXVTSLxgF9-OzYWitLmP64ZfvmfDtdsin414wU29HPwS2pFbyuq0LWVS7_u77liDvB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099743971</pqid></control><display><type>article</type><title>Machine learning models of plastic flow based on representation theory</title><source>Free E- Journals</source><creator>Jones, Reese E ; Templeton, Jeremy A ; Sanders, Clay M ; Ostien, Jakob T</creator><creatorcontrib>Jones, Reese E ; Templeton, Jeremy A ; Sanders, Clay M ; Ostien, Jakob T</creatorcontrib><description>We use machine learning (ML) to infer stress and plastic flow rules using data from repre- sentative polycrystalline simulations. In particular, we use so-called deep (multilayer) neural networks (NN) to represent the two response functions. The ML process does not choose ap- propriate inputs or outputs, rather it is trained on selected inputs and output. Likewise, its discrimination of features is crucially connected to the chosen input-output map. Hence, we draw upon classical constitutive modeling to select inputs and enforce well-accepted symmetries and other properties. With these developments, we enable rapid model building in real-time with experiments, and guide data collection and feature discovery.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Computer simulation ; Data acquisition ; Machine learning ; Multilayers ; Neural networks ; Plastic flow ; Response functions</subject><ispartof>arXiv.org, 2018-09</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Jones, Reese E</creatorcontrib><creatorcontrib>Templeton, Jeremy A</creatorcontrib><creatorcontrib>Sanders, Clay M</creatorcontrib><creatorcontrib>Ostien, Jakob T</creatorcontrib><title>Machine learning models of plastic flow based on representation theory</title><title>arXiv.org</title><description>We use machine learning (ML) to infer stress and plastic flow rules using data from repre- sentative polycrystalline simulations. In particular, we use so-called deep (multilayer) neural networks (NN) to represent the two response functions. The ML process does not choose ap- propriate inputs or outputs, rather it is trained on selected inputs and output. Likewise, its discrimination of features is crucially connected to the chosen input-output map. Hence, we draw upon classical constitutive modeling to select inputs and enforce well-accepted symmetries and other properties. With these developments, we enable rapid model building in real-time with experiments, and guide data collection and feature discovery.</description><subject>Artificial intelligence</subject><subject>Computer simulation</subject><subject>Data acquisition</subject><subject>Machine learning</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Plastic flow</subject><subject>Response functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNirEKwjAUAIMgWLT_8MC5kCattbNYXNzcS2xfbEpMal6K-Pd28AOcjuNuxRIhZZ4dCyE2LCUaOefiUImylAlrrqobjEOwqIIz7gFP36Ml8BomqyiaDrT1b7grwh68g4BTQEIXVTSLxgF9-OzYWitLmP64ZfvmfDtdsin414wU29HPwS2pFbyuq0LWVS7_u77liDvB</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Jones, Reese E</creator><creator>Templeton, Jeremy A</creator><creator>Sanders, Clay M</creator><creator>Ostien, Jakob T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180901</creationdate><title>Machine learning models of plastic flow based on representation theory</title><author>Jones, Reese E ; Templeton, Jeremy A ; Sanders, Clay M ; Ostien, Jakob T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20997439713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Computer simulation</topic><topic>Data acquisition</topic><topic>Machine learning</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Plastic flow</topic><topic>Response functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Jones, Reese E</creatorcontrib><creatorcontrib>Templeton, Jeremy A</creatorcontrib><creatorcontrib>Sanders, Clay M</creatorcontrib><creatorcontrib>Ostien, Jakob T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Reese E</au><au>Templeton, Jeremy A</au><au>Sanders, Clay M</au><au>Ostien, Jakob T</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Machine learning models of plastic flow based on representation theory</atitle><jtitle>arXiv.org</jtitle><date>2018-09-01</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We use machine learning (ML) to infer stress and plastic flow rules using data from repre- sentative polycrystalline simulations. In particular, we use so-called deep (multilayer) neural networks (NN) to represent the two response functions. The ML process does not choose ap- propriate inputs or outputs, rather it is trained on selected inputs and output. Likewise, its discrimination of features is crucially connected to the chosen input-output map. Hence, we draw upon classical constitutive modeling to select inputs and enforce well-accepted symmetries and other properties. With these developments, we enable rapid model building in real-time with experiments, and guide data collection and feature discovery.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2099743971
source Free E- Journals
subjects Artificial intelligence
Computer simulation
Data acquisition
Machine learning
Multilayers
Neural networks
Plastic flow
Response functions
title Machine learning models of plastic flow based on representation theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Machine%20learning%20models%20of%20plastic%20flow%20based%20on%20representation%20theory&rft.jtitle=arXiv.org&rft.au=Jones,%20Reese%20E&rft.date=2018-09-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2099743971%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099743971&rft_id=info:pmid/&rfr_iscdi=true