Evaluation of the minimum face clearance of a high-speed gas-lubricated bearing with Navier slip boundary conditions under random excitations

Motivated by ongoing developments in aero-engine technology, a model for a coupled gas-lubricated bearing is developed in terms of an extended dynamical system. A slip boundary condition, characterised by a slip length, is incorporated on the bearing faces which can be relevant for operation in non-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering mathematics 2018-10, Vol.112 (1), p.17-35
Hauptverfasser: Bailey, N. Y., Hibberd, S., Power, H., Tretyakov, M. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 1
container_start_page 17
container_title Journal of engineering mathematics
container_volume 112
creator Bailey, N. Y.
Hibberd, S.
Power, H.
Tretyakov, M. V.
description Motivated by ongoing developments in aero-engine technology, a model for a coupled gas-lubricated bearing is developed in terms of an extended dynamical system. A slip boundary condition, characterised by a slip length, is incorporated on the bearing faces which can be relevant for operation in non-ideal extreme conditions, notably where external vibrations or disturbances could destabilise the bearing. A modified Reynolds equation is formulated to model the gas flow, retaining the effects of centrifugal inertia which is increasingly important for high-speed operation, and is coupled to the structural equations; spring-mass-damper systems model the axial stator and rotor displacements. A novel model is developed corresponding to a bearing experiencing an external random force to evaluate the resulting induced displacements of the bearing components. The minimum face clearance is obtained from a mapping solver for the modified Reynolds equation and structural equations simultaneously. In the case of random excitations, the solver is combined with a Monte Carlo technique. Evaluation of the average value of the minimum gap and the probability of the gap reaching a prescribed tolerance are provided. Extensive insight is given on the effect of key bearing parameters on the corresponding bearing dynamics.
doi_str_mv 10.1007/s10665-018-9963-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2099472556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099472556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-57d46043b510a7f50bb39f10648abbb3dd25794d1652a6b954cb5d07f230d74a3</originalsourceid><addsrcrecordid>eNp1kM1OAyEUhYnRxFp9AHckrtELDENZGuNf0uhG1wQGpqWZP2Gm6kP4zlJr4soVl3vPORc-hM4pXFIAeZUolKUgQBdEqZITdYBmVEhOmAR-iGYAjBFYcH6MTlLaAIBaFGyGvm63ppnMGPoO9zUe1x63oQvt1OLaVB5XjTfRdLnKU4PXYbUmafDe4ZVJpJlsDJUZ89VmXehW-D2Ma_xktsFHnJowYNtPnTPxE1d958JuUcK5k8c51_Ut9h9VGH9ekE7RUW2a5M9-zzl6vbt9uXkgy-f7x5vrJam4UCMR0hUlFNwKCkbWAqzlqs4EioWxuXaOCakKR0vBTGmVKCorHMiacXCyMHyOLva5Q-zfJp9Gvemn2OWVmoFShWRClFlF96oq9ilFX-shhjZ_RVPQO-p6T11n6npHXavsYXtPGnY4fPxL_t_0DY0ZhyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099472556</pqid></control><display><type>article</type><title>Evaluation of the minimum face clearance of a high-speed gas-lubricated bearing with Navier slip boundary conditions under random excitations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bailey, N. Y. ; Hibberd, S. ; Power, H. ; Tretyakov, M. V.</creator><creatorcontrib>Bailey, N. Y. ; Hibberd, S. ; Power, H. ; Tretyakov, M. V.</creatorcontrib><description>Motivated by ongoing developments in aero-engine technology, a model for a coupled gas-lubricated bearing is developed in terms of an extended dynamical system. A slip boundary condition, characterised by a slip length, is incorporated on the bearing faces which can be relevant for operation in non-ideal extreme conditions, notably where external vibrations or disturbances could destabilise the bearing. A modified Reynolds equation is formulated to model the gas flow, retaining the effects of centrifugal inertia which is increasingly important for high-speed operation, and is coupled to the structural equations; spring-mass-damper systems model the axial stator and rotor displacements. A novel model is developed corresponding to a bearing experiencing an external random force to evaluate the resulting induced displacements of the bearing components. The minimum face clearance is obtained from a mapping solver for the modified Reynolds equation and structural equations simultaneously. In the case of random excitations, the solver is combined with a Monte Carlo technique. Evaluation of the average value of the minimum gap and the probability of the gap reaching a prescribed tolerance are provided. Extensive insight is given on the effect of key bearing parameters on the corresponding bearing dynamics.</description><identifier>ISSN: 0022-0833</identifier><identifier>EISSN: 1573-2703</identifier><identifier>DOI: 10.1007/s10665-018-9963-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Bearing ; Boundary conditions ; Computational fluid dynamics ; Computational Mathematics and Numerical Analysis ; Computer simulation ; Gas flow ; High speed ; Lubrication ; Mathematical and Computational Engineering ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Reynolds equation ; Slip ; Theoretical and Applied Mechanics</subject><ispartof>Journal of engineering mathematics, 2018-10, Vol.112 (1), p.17-35</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-57d46043b510a7f50bb39f10648abbb3dd25794d1652a6b954cb5d07f230d74a3</citedby><cites>FETCH-LOGICAL-c359t-57d46043b510a7f50bb39f10648abbb3dd25794d1652a6b954cb5d07f230d74a3</cites><orcidid>0000-0002-2711-5399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10665-018-9963-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10665-018-9963-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Bailey, N. Y.</creatorcontrib><creatorcontrib>Hibberd, S.</creatorcontrib><creatorcontrib>Power, H.</creatorcontrib><creatorcontrib>Tretyakov, M. V.</creatorcontrib><title>Evaluation of the minimum face clearance of a high-speed gas-lubricated bearing with Navier slip boundary conditions under random excitations</title><title>Journal of engineering mathematics</title><addtitle>J Eng Math</addtitle><description>Motivated by ongoing developments in aero-engine technology, a model for a coupled gas-lubricated bearing is developed in terms of an extended dynamical system. A slip boundary condition, characterised by a slip length, is incorporated on the bearing faces which can be relevant for operation in non-ideal extreme conditions, notably where external vibrations or disturbances could destabilise the bearing. A modified Reynolds equation is formulated to model the gas flow, retaining the effects of centrifugal inertia which is increasingly important for high-speed operation, and is coupled to the structural equations; spring-mass-damper systems model the axial stator and rotor displacements. A novel model is developed corresponding to a bearing experiencing an external random force to evaluate the resulting induced displacements of the bearing components. The minimum face clearance is obtained from a mapping solver for the modified Reynolds equation and structural equations simultaneously. In the case of random excitations, the solver is combined with a Monte Carlo technique. Evaluation of the average value of the minimum gap and the probability of the gap reaching a prescribed tolerance are provided. Extensive insight is given on the effect of key bearing parameters on the corresponding bearing dynamics.</description><subject>Applications of Mathematics</subject><subject>Bearing</subject><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer simulation</subject><subject>Gas flow</subject><subject>High speed</subject><subject>Lubrication</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Reynolds equation</subject><subject>Slip</subject><subject>Theoretical and Applied Mechanics</subject><issn>0022-0833</issn><issn>1573-2703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kM1OAyEUhYnRxFp9AHckrtELDENZGuNf0uhG1wQGpqWZP2Gm6kP4zlJr4soVl3vPORc-hM4pXFIAeZUolKUgQBdEqZITdYBmVEhOmAR-iGYAjBFYcH6MTlLaAIBaFGyGvm63ppnMGPoO9zUe1x63oQvt1OLaVB5XjTfRdLnKU4PXYbUmafDe4ZVJpJlsDJUZ89VmXehW-D2Ma_xktsFHnJowYNtPnTPxE1d958JuUcK5k8c51_Ut9h9VGH9ekE7RUW2a5M9-zzl6vbt9uXkgy-f7x5vrJam4UCMR0hUlFNwKCkbWAqzlqs4EioWxuXaOCakKR0vBTGmVKCorHMiacXCyMHyOLva5Q-zfJp9Gvemn2OWVmoFShWRClFlF96oq9ilFX-shhjZ_RVPQO-p6T11n6npHXavsYXtPGnY4fPxL_t_0DY0ZhyI</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Bailey, N. Y.</creator><creator>Hibberd, S.</creator><creator>Power, H.</creator><creator>Tretyakov, M. V.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2711-5399</orcidid></search><sort><creationdate>20181001</creationdate><title>Evaluation of the minimum face clearance of a high-speed gas-lubricated bearing with Navier slip boundary conditions under random excitations</title><author>Bailey, N. Y. ; Hibberd, S. ; Power, H. ; Tretyakov, M. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-57d46043b510a7f50bb39f10648abbb3dd25794d1652a6b954cb5d07f230d74a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Bearing</topic><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer simulation</topic><topic>Gas flow</topic><topic>High speed</topic><topic>Lubrication</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Reynolds equation</topic><topic>Slip</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bailey, N. Y.</creatorcontrib><creatorcontrib>Hibberd, S.</creatorcontrib><creatorcontrib>Power, H.</creatorcontrib><creatorcontrib>Tretyakov, M. V.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bailey, N. Y.</au><au>Hibberd, S.</au><au>Power, H.</au><au>Tretyakov, M. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of the minimum face clearance of a high-speed gas-lubricated bearing with Navier slip boundary conditions under random excitations</atitle><jtitle>Journal of engineering mathematics</jtitle><stitle>J Eng Math</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>112</volume><issue>1</issue><spage>17</spage><epage>35</epage><pages>17-35</pages><issn>0022-0833</issn><eissn>1573-2703</eissn><abstract>Motivated by ongoing developments in aero-engine technology, a model for a coupled gas-lubricated bearing is developed in terms of an extended dynamical system. A slip boundary condition, characterised by a slip length, is incorporated on the bearing faces which can be relevant for operation in non-ideal extreme conditions, notably where external vibrations or disturbances could destabilise the bearing. A modified Reynolds equation is formulated to model the gas flow, retaining the effects of centrifugal inertia which is increasingly important for high-speed operation, and is coupled to the structural equations; spring-mass-damper systems model the axial stator and rotor displacements. A novel model is developed corresponding to a bearing experiencing an external random force to evaluate the resulting induced displacements of the bearing components. The minimum face clearance is obtained from a mapping solver for the modified Reynolds equation and structural equations simultaneously. In the case of random excitations, the solver is combined with a Monte Carlo technique. Evaluation of the average value of the minimum gap and the probability of the gap reaching a prescribed tolerance are provided. Extensive insight is given on the effect of key bearing parameters on the corresponding bearing dynamics.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10665-018-9963-9</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2711-5399</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0833
ispartof Journal of engineering mathematics, 2018-10, Vol.112 (1), p.17-35
issn 0022-0833
1573-2703
language eng
recordid cdi_proquest_journals_2099472556
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Bearing
Boundary conditions
Computational fluid dynamics
Computational Mathematics and Numerical Analysis
Computer simulation
Gas flow
High speed
Lubrication
Mathematical and Computational Engineering
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mathematics
Mathematics and Statistics
Reynolds equation
Slip
Theoretical and Applied Mechanics
title Evaluation of the minimum face clearance of a high-speed gas-lubricated bearing with Navier slip boundary conditions under random excitations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20the%20minimum%20face%20clearance%20of%20a%20high-speed%20gas-lubricated%20bearing%20with%20Navier%20slip%20boundary%20conditions%20under%20random%20excitations&rft.jtitle=Journal%20of%20engineering%20mathematics&rft.au=Bailey,%20N.%20Y.&rft.date=2018-10-01&rft.volume=112&rft.issue=1&rft.spage=17&rft.epage=35&rft.pages=17-35&rft.issn=0022-0833&rft.eissn=1573-2703&rft_id=info:doi/10.1007/s10665-018-9963-9&rft_dat=%3Cproquest_cross%3E2099472556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099472556&rft_id=info:pmid/&rfr_iscdi=true