Dermoscopic assisted diagnosis in melanoma: Reviewing results, optimizing methodologies and quantifying empirical guidelines

•Review on recent dermoscopy melanoma classification results.•Design and optimization of a melanoma classification method with feature selection.•Proposal of multi-criteria decision analysis to assess melanoma classification. Early diagnosis is still the most important factor to deal with skin cance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2018-10, Vol.158, p.9-24
Hauptverfasser: Lee, Huei Diana, Mendes, Ana Isabel, Spolaôr, Newton, Oliva, Jefferson Tales, Sabino Parmezan, Antonio Rafael, Wu, Feng Chung, Fonseca-Pinto, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue
container_start_page 9
container_title Knowledge-based systems
container_volume 158
creator Lee, Huei Diana
Mendes, Ana Isabel
Spolaôr, Newton
Oliva, Jefferson Tales
Sabino Parmezan, Antonio Rafael
Wu, Feng Chung
Fonseca-Pinto, Rui
description •Review on recent dermoscopy melanoma classification results.•Design and optimization of a melanoma classification method with feature selection.•Proposal of multi-criteria decision analysis to assess melanoma classification. Early diagnosis is still the most important factor to deal with skin cancer, a disease that challenges physicians and researchers. It has benefited from computer-aided diagnosis methods that successfully combine dermoscopy, Digital Image Processing, and Machine Learning techniques. This paper aims to approximate medical professionals working with dermoscopy to these methods, to join the challenge of melanoma early detection. Accordingly, a proposal for extracting, selecting and combining texture and shape features from dermoscopic images is presented. The Feature Selection task is added to the learning process to potentiate the quality of classification models. Three classical Machine Learning algorithms were applied to differentiate melanoma from non-melanoma images. The models are evaluated by standard performance measures and a multi-criteria decision analysis method. This is the first time such method is used in melanoma diagnosis. As a result, we found a decision tree that performs well and allows the explicit representation and analysis of the knowledge learned from the images. In addition, the competitiveness of our decision models in comparison with literature approaches reviewed in this work encourages further applications of Machine Learning and Feature Selection to assist computer-aided diagnosis.
doi_str_mv 10.1016/j.knosys.2018.05.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2099450119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705118302454</els_id><sourcerecordid>2099450119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a6e612f185e44456f1248300b3f6e0b8074f9770a3c6e7c63c099eeb0e8f943a3</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVpods036AHQa-1M7Llfz0UStImgUCgtGehlceb2diSo7FbNvTDV8v2nNPAm_feMD8hPijIFaj6Yp8_-sAHzgtQbQ5VnsRXYqPapsgaDd1rsYGugqyBSr0V75j3AFAUqt2Iv1cYp8AuzOSkZSZesJc92V1qJJbk5YSj9WGyn-UP_E34h_xORuR1XPiTDPNCEz0ftQmXh9CHMewIWVrfy6fV-oWGw3GL00yRnB3lbqUeR_LI78WbwY6M5__nmfj1_dvPy5vs7v769vLrXebKUi-ZrbFWxaDaCrXWVT2oQrclwLYcaoRtC40euqYBW7oaG1eXDroOcQvYDp0ubXkmPp565xieVuTF7MMafTppimTVFSjVJZc-uVwMzBEHM0eabDwYBebI2ezNibM5cjZQmSSm2JdTDNMHiU807Ai9w54iusX0gV4u-AfL7Iup</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099450119</pqid></control><display><type>article</type><title>Dermoscopic assisted diagnosis in melanoma: Reviewing results, optimizing methodologies and quantifying empirical guidelines</title><source>Elsevier ScienceDirect Journals</source><creator>Lee, Huei Diana ; Mendes, Ana Isabel ; Spolaôr, Newton ; Oliva, Jefferson Tales ; Sabino Parmezan, Antonio Rafael ; Wu, Feng Chung ; Fonseca-Pinto, Rui</creator><creatorcontrib>Lee, Huei Diana ; Mendes, Ana Isabel ; Spolaôr, Newton ; Oliva, Jefferson Tales ; Sabino Parmezan, Antonio Rafael ; Wu, Feng Chung ; Fonseca-Pinto, Rui</creatorcontrib><description>•Review on recent dermoscopy melanoma classification results.•Design and optimization of a melanoma classification method with feature selection.•Proposal of multi-criteria decision analysis to assess melanoma classification. Early diagnosis is still the most important factor to deal with skin cancer, a disease that challenges physicians and researchers. It has benefited from computer-aided diagnosis methods that successfully combine dermoscopy, Digital Image Processing, and Machine Learning techniques. This paper aims to approximate medical professionals working with dermoscopy to these methods, to join the challenge of melanoma early detection. Accordingly, a proposal for extracting, selecting and combining texture and shape features from dermoscopic images is presented. The Feature Selection task is added to the learning process to potentiate the quality of classification models. Three classical Machine Learning algorithms were applied to differentiate melanoma from non-melanoma images. The models are evaluated by standard performance measures and a multi-criteria decision analysis method. This is the first time such method is used in melanoma diagnosis. As a result, we found a decision tree that performs well and allows the explicit representation and analysis of the knowledge learned from the images. In addition, the competitiveness of our decision models in comparison with literature approaches reviewed in this work encourages further applications of Machine Learning and Feature Selection to assist computer-aided diagnosis.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2018.05.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Approximation ; Artificial intelligence ; CAD ; Computer aided design ; Computer-aided diagnosis ; Data mining ; Decision analysis ; Decision trees ; Dermoscopy ; Diagnosis ; Digital computers ; Digital imaging ; Empirical analysis ; Feature extraction ; Image analysis ; Image processing ; Image processing systems ; Literature reviews ; Machine learning ; Medical diagnosis ; Medical imaging ; Melanoma ; Multiple criterion ; Physicians ; Skin cancer</subject><ispartof>Knowledge-based systems, 2018-10, Vol.158, p.9-24</ispartof><rights>2018</rights><rights>Copyright Elsevier Science Ltd. Oct 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a6e612f185e44456f1248300b3f6e0b8074f9770a3c6e7c63c099eeb0e8f943a3</citedby><cites>FETCH-LOGICAL-c334t-a6e612f185e44456f1248300b3f6e0b8074f9770a3c6e7c63c099eeb0e8f943a3</cites><orcidid>0000-0003-1574-1293 ; 0000-0003-0748-3693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0950705118302454$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Lee, Huei Diana</creatorcontrib><creatorcontrib>Mendes, Ana Isabel</creatorcontrib><creatorcontrib>Spolaôr, Newton</creatorcontrib><creatorcontrib>Oliva, Jefferson Tales</creatorcontrib><creatorcontrib>Sabino Parmezan, Antonio Rafael</creatorcontrib><creatorcontrib>Wu, Feng Chung</creatorcontrib><creatorcontrib>Fonseca-Pinto, Rui</creatorcontrib><title>Dermoscopic assisted diagnosis in melanoma: Reviewing results, optimizing methodologies and quantifying empirical guidelines</title><title>Knowledge-based systems</title><description>•Review on recent dermoscopy melanoma classification results.•Design and optimization of a melanoma classification method with feature selection.•Proposal of multi-criteria decision analysis to assess melanoma classification. Early diagnosis is still the most important factor to deal with skin cancer, a disease that challenges physicians and researchers. It has benefited from computer-aided diagnosis methods that successfully combine dermoscopy, Digital Image Processing, and Machine Learning techniques. This paper aims to approximate medical professionals working with dermoscopy to these methods, to join the challenge of melanoma early detection. Accordingly, a proposal for extracting, selecting and combining texture and shape features from dermoscopic images is presented. The Feature Selection task is added to the learning process to potentiate the quality of classification models. Three classical Machine Learning algorithms were applied to differentiate melanoma from non-melanoma images. The models are evaluated by standard performance measures and a multi-criteria decision analysis method. This is the first time such method is used in melanoma diagnosis. As a result, we found a decision tree that performs well and allows the explicit representation and analysis of the knowledge learned from the images. In addition, the competitiveness of our decision models in comparison with literature approaches reviewed in this work encourages further applications of Machine Learning and Feature Selection to assist computer-aided diagnosis.</description><subject>Approximation</subject><subject>Artificial intelligence</subject><subject>CAD</subject><subject>Computer aided design</subject><subject>Computer-aided diagnosis</subject><subject>Data mining</subject><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Dermoscopy</subject><subject>Diagnosis</subject><subject>Digital computers</subject><subject>Digital imaging</subject><subject>Empirical analysis</subject><subject>Feature extraction</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image processing systems</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Melanoma</subject><subject>Multiple criterion</subject><subject>Physicians</subject><subject>Skin cancer</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVpods036AHQa-1M7Llfz0UStImgUCgtGehlceb2diSo7FbNvTDV8v2nNPAm_feMD8hPijIFaj6Yp8_-sAHzgtQbQ5VnsRXYqPapsgaDd1rsYGugqyBSr0V75j3AFAUqt2Iv1cYp8AuzOSkZSZesJc92V1qJJbk5YSj9WGyn-UP_E34h_xORuR1XPiTDPNCEz0ftQmXh9CHMewIWVrfy6fV-oWGw3GL00yRnB3lbqUeR_LI78WbwY6M5__nmfj1_dvPy5vs7v769vLrXebKUi-ZrbFWxaDaCrXWVT2oQrclwLYcaoRtC40euqYBW7oaG1eXDroOcQvYDp0ubXkmPp565xieVuTF7MMafTppimTVFSjVJZc-uVwMzBEHM0eabDwYBebI2ezNibM5cjZQmSSm2JdTDNMHiU807Ai9w54iusX0gV4u-AfL7Iup</recordid><startdate>20181015</startdate><enddate>20181015</enddate><creator>Lee, Huei Diana</creator><creator>Mendes, Ana Isabel</creator><creator>Spolaôr, Newton</creator><creator>Oliva, Jefferson Tales</creator><creator>Sabino Parmezan, Antonio Rafael</creator><creator>Wu, Feng Chung</creator><creator>Fonseca-Pinto, Rui</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1574-1293</orcidid><orcidid>https://orcid.org/0000-0003-0748-3693</orcidid></search><sort><creationdate>20181015</creationdate><title>Dermoscopic assisted diagnosis in melanoma: Reviewing results, optimizing methodologies and quantifying empirical guidelines</title><author>Lee, Huei Diana ; Mendes, Ana Isabel ; Spolaôr, Newton ; Oliva, Jefferson Tales ; Sabino Parmezan, Antonio Rafael ; Wu, Feng Chung ; Fonseca-Pinto, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a6e612f185e44456f1248300b3f6e0b8074f9770a3c6e7c63c099eeb0e8f943a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Artificial intelligence</topic><topic>CAD</topic><topic>Computer aided design</topic><topic>Computer-aided diagnosis</topic><topic>Data mining</topic><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Dermoscopy</topic><topic>Diagnosis</topic><topic>Digital computers</topic><topic>Digital imaging</topic><topic>Empirical analysis</topic><topic>Feature extraction</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image processing systems</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Melanoma</topic><topic>Multiple criterion</topic><topic>Physicians</topic><topic>Skin cancer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Huei Diana</creatorcontrib><creatorcontrib>Mendes, Ana Isabel</creatorcontrib><creatorcontrib>Spolaôr, Newton</creatorcontrib><creatorcontrib>Oliva, Jefferson Tales</creatorcontrib><creatorcontrib>Sabino Parmezan, Antonio Rafael</creatorcontrib><creatorcontrib>Wu, Feng Chung</creatorcontrib><creatorcontrib>Fonseca-Pinto, Rui</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Huei Diana</au><au>Mendes, Ana Isabel</au><au>Spolaôr, Newton</au><au>Oliva, Jefferson Tales</au><au>Sabino Parmezan, Antonio Rafael</au><au>Wu, Feng Chung</au><au>Fonseca-Pinto, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dermoscopic assisted diagnosis in melanoma: Reviewing results, optimizing methodologies and quantifying empirical guidelines</atitle><jtitle>Knowledge-based systems</jtitle><date>2018-10-15</date><risdate>2018</risdate><volume>158</volume><spage>9</spage><epage>24</epage><pages>9-24</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>•Review on recent dermoscopy melanoma classification results.•Design and optimization of a melanoma classification method with feature selection.•Proposal of multi-criteria decision analysis to assess melanoma classification. Early diagnosis is still the most important factor to deal with skin cancer, a disease that challenges physicians and researchers. It has benefited from computer-aided diagnosis methods that successfully combine dermoscopy, Digital Image Processing, and Machine Learning techniques. This paper aims to approximate medical professionals working with dermoscopy to these methods, to join the challenge of melanoma early detection. Accordingly, a proposal for extracting, selecting and combining texture and shape features from dermoscopic images is presented. The Feature Selection task is added to the learning process to potentiate the quality of classification models. Three classical Machine Learning algorithms were applied to differentiate melanoma from non-melanoma images. The models are evaluated by standard performance measures and a multi-criteria decision analysis method. This is the first time such method is used in melanoma diagnosis. As a result, we found a decision tree that performs well and allows the explicit representation and analysis of the knowledge learned from the images. In addition, the competitiveness of our decision models in comparison with literature approaches reviewed in this work encourages further applications of Machine Learning and Feature Selection to assist computer-aided diagnosis.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2018.05.016</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1574-1293</orcidid><orcidid>https://orcid.org/0000-0003-0748-3693</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2018-10, Vol.158, p.9-24
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2099450119
source Elsevier ScienceDirect Journals
subjects Approximation
Artificial intelligence
CAD
Computer aided design
Computer-aided diagnosis
Data mining
Decision analysis
Decision trees
Dermoscopy
Diagnosis
Digital computers
Digital imaging
Empirical analysis
Feature extraction
Image analysis
Image processing
Image processing systems
Literature reviews
Machine learning
Medical diagnosis
Medical imaging
Melanoma
Multiple criterion
Physicians
Skin cancer
title Dermoscopic assisted diagnosis in melanoma: Reviewing results, optimizing methodologies and quantifying empirical guidelines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A16%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dermoscopic%20assisted%20diagnosis%20in%20melanoma:%20Reviewing%20results,%20optimizing%20methodologies%20and%20quantifying%20empirical%20guidelines&rft.jtitle=Knowledge-based%20systems&rft.au=Lee,%20Huei%20Diana&rft.date=2018-10-15&rft.volume=158&rft.spage=9&rft.epage=24&rft.pages=9-24&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2018.05.016&rft_dat=%3Cproquest_cross%3E2099450119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099450119&rft_id=info:pmid/&rft_els_id=S0950705118302454&rfr_iscdi=true