Dermoscopic assisted diagnosis in melanoma: Reviewing results, optimizing methodologies and quantifying empirical guidelines
•Review on recent dermoscopy melanoma classification results.•Design and optimization of a melanoma classification method with feature selection.•Proposal of multi-criteria decision analysis to assess melanoma classification. Early diagnosis is still the most important factor to deal with skin cance...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2018-10, Vol.158, p.9-24 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | |
container_start_page | 9 |
container_title | Knowledge-based systems |
container_volume | 158 |
creator | Lee, Huei Diana Mendes, Ana Isabel Spolaôr, Newton Oliva, Jefferson Tales Sabino Parmezan, Antonio Rafael Wu, Feng Chung Fonseca-Pinto, Rui |
description | •Review on recent dermoscopy melanoma classification results.•Design and optimization of a melanoma classification method with feature selection.•Proposal of multi-criteria decision analysis to assess melanoma classification.
Early diagnosis is still the most important factor to deal with skin cancer, a disease that challenges physicians and researchers. It has benefited from computer-aided diagnosis methods that successfully combine dermoscopy, Digital Image Processing, and Machine Learning techniques. This paper aims to approximate medical professionals working with dermoscopy to these methods, to join the challenge of melanoma early detection. Accordingly, a proposal for extracting, selecting and combining texture and shape features from dermoscopic images is presented. The Feature Selection task is added to the learning process to potentiate the quality of classification models. Three classical Machine Learning algorithms were applied to differentiate melanoma from non-melanoma images. The models are evaluated by standard performance measures and a multi-criteria decision analysis method. This is the first time such method is used in melanoma diagnosis. As a result, we found a decision tree that performs well and allows the explicit representation and analysis of the knowledge learned from the images. In addition, the competitiveness of our decision models in comparison with literature approaches reviewed in this work encourages further applications of Machine Learning and Feature Selection to assist computer-aided diagnosis. |
doi_str_mv | 10.1016/j.knosys.2018.05.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2099450119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705118302454</els_id><sourcerecordid>2099450119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a6e612f185e44456f1248300b3f6e0b8074f9770a3c6e7c63c099eeb0e8f943a3</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVpods036AHQa-1M7Llfz0UStImgUCgtGehlceb2diSo7FbNvTDV8v2nNPAm_feMD8hPijIFaj6Yp8_-sAHzgtQbQ5VnsRXYqPapsgaDd1rsYGugqyBSr0V75j3AFAUqt2Iv1cYp8AuzOSkZSZesJc92V1qJJbk5YSj9WGyn-UP_E34h_xORuR1XPiTDPNCEz0ftQmXh9CHMewIWVrfy6fV-oWGw3GL00yRnB3lbqUeR_LI78WbwY6M5__nmfj1_dvPy5vs7v769vLrXebKUi-ZrbFWxaDaCrXWVT2oQrclwLYcaoRtC40euqYBW7oaG1eXDroOcQvYDp0ubXkmPp565xieVuTF7MMafTppimTVFSjVJZc-uVwMzBEHM0eabDwYBebI2ezNibM5cjZQmSSm2JdTDNMHiU807Ai9w54iusX0gV4u-AfL7Iup</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099450119</pqid></control><display><type>article</type><title>Dermoscopic assisted diagnosis in melanoma: Reviewing results, optimizing methodologies and quantifying empirical guidelines</title><source>Elsevier ScienceDirect Journals</source><creator>Lee, Huei Diana ; Mendes, Ana Isabel ; Spolaôr, Newton ; Oliva, Jefferson Tales ; Sabino Parmezan, Antonio Rafael ; Wu, Feng Chung ; Fonseca-Pinto, Rui</creator><creatorcontrib>Lee, Huei Diana ; Mendes, Ana Isabel ; Spolaôr, Newton ; Oliva, Jefferson Tales ; Sabino Parmezan, Antonio Rafael ; Wu, Feng Chung ; Fonseca-Pinto, Rui</creatorcontrib><description>•Review on recent dermoscopy melanoma classification results.•Design and optimization of a melanoma classification method with feature selection.•Proposal of multi-criteria decision analysis to assess melanoma classification.
Early diagnosis is still the most important factor to deal with skin cancer, a disease that challenges physicians and researchers. It has benefited from computer-aided diagnosis methods that successfully combine dermoscopy, Digital Image Processing, and Machine Learning techniques. This paper aims to approximate medical professionals working with dermoscopy to these methods, to join the challenge of melanoma early detection. Accordingly, a proposal for extracting, selecting and combining texture and shape features from dermoscopic images is presented. The Feature Selection task is added to the learning process to potentiate the quality of classification models. Three classical Machine Learning algorithms were applied to differentiate melanoma from non-melanoma images. The models are evaluated by standard performance measures and a multi-criteria decision analysis method. This is the first time such method is used in melanoma diagnosis. As a result, we found a decision tree that performs well and allows the explicit representation and analysis of the knowledge learned from the images. In addition, the competitiveness of our decision models in comparison with literature approaches reviewed in this work encourages further applications of Machine Learning and Feature Selection to assist computer-aided diagnosis.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2018.05.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Approximation ; Artificial intelligence ; CAD ; Computer aided design ; Computer-aided diagnosis ; Data mining ; Decision analysis ; Decision trees ; Dermoscopy ; Diagnosis ; Digital computers ; Digital imaging ; Empirical analysis ; Feature extraction ; Image analysis ; Image processing ; Image processing systems ; Literature reviews ; Machine learning ; Medical diagnosis ; Medical imaging ; Melanoma ; Multiple criterion ; Physicians ; Skin cancer</subject><ispartof>Knowledge-based systems, 2018-10, Vol.158, p.9-24</ispartof><rights>2018</rights><rights>Copyright Elsevier Science Ltd. Oct 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a6e612f185e44456f1248300b3f6e0b8074f9770a3c6e7c63c099eeb0e8f943a3</citedby><cites>FETCH-LOGICAL-c334t-a6e612f185e44456f1248300b3f6e0b8074f9770a3c6e7c63c099eeb0e8f943a3</cites><orcidid>0000-0003-1574-1293 ; 0000-0003-0748-3693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0950705118302454$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Lee, Huei Diana</creatorcontrib><creatorcontrib>Mendes, Ana Isabel</creatorcontrib><creatorcontrib>Spolaôr, Newton</creatorcontrib><creatorcontrib>Oliva, Jefferson Tales</creatorcontrib><creatorcontrib>Sabino Parmezan, Antonio Rafael</creatorcontrib><creatorcontrib>Wu, Feng Chung</creatorcontrib><creatorcontrib>Fonseca-Pinto, Rui</creatorcontrib><title>Dermoscopic assisted diagnosis in melanoma: Reviewing results, optimizing methodologies and quantifying empirical guidelines</title><title>Knowledge-based systems</title><description>•Review on recent dermoscopy melanoma classification results.•Design and optimization of a melanoma classification method with feature selection.•Proposal of multi-criteria decision analysis to assess melanoma classification.
Early diagnosis is still the most important factor to deal with skin cancer, a disease that challenges physicians and researchers. It has benefited from computer-aided diagnosis methods that successfully combine dermoscopy, Digital Image Processing, and Machine Learning techniques. This paper aims to approximate medical professionals working with dermoscopy to these methods, to join the challenge of melanoma early detection. Accordingly, a proposal for extracting, selecting and combining texture and shape features from dermoscopic images is presented. The Feature Selection task is added to the learning process to potentiate the quality of classification models. Three classical Machine Learning algorithms were applied to differentiate melanoma from non-melanoma images. The models are evaluated by standard performance measures and a multi-criteria decision analysis method. This is the first time such method is used in melanoma diagnosis. As a result, we found a decision tree that performs well and allows the explicit representation and analysis of the knowledge learned from the images. In addition, the competitiveness of our decision models in comparison with literature approaches reviewed in this work encourages further applications of Machine Learning and Feature Selection to assist computer-aided diagnosis.</description><subject>Approximation</subject><subject>Artificial intelligence</subject><subject>CAD</subject><subject>Computer aided design</subject><subject>Computer-aided diagnosis</subject><subject>Data mining</subject><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Dermoscopy</subject><subject>Diagnosis</subject><subject>Digital computers</subject><subject>Digital imaging</subject><subject>Empirical analysis</subject><subject>Feature extraction</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image processing systems</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Melanoma</subject><subject>Multiple criterion</subject><subject>Physicians</subject><subject>Skin cancer</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVpods036AHQa-1M7Llfz0UStImgUCgtGehlceb2diSo7FbNvTDV8v2nNPAm_feMD8hPijIFaj6Yp8_-sAHzgtQbQ5VnsRXYqPapsgaDd1rsYGugqyBSr0V75j3AFAUqt2Iv1cYp8AuzOSkZSZesJc92V1qJJbk5YSj9WGyn-UP_E34h_xORuR1XPiTDPNCEz0ftQmXh9CHMewIWVrfy6fV-oWGw3GL00yRnB3lbqUeR_LI78WbwY6M5__nmfj1_dvPy5vs7v769vLrXebKUi-ZrbFWxaDaCrXWVT2oQrclwLYcaoRtC40euqYBW7oaG1eXDroOcQvYDp0ubXkmPp565xieVuTF7MMafTppimTVFSjVJZc-uVwMzBEHM0eabDwYBebI2ezNibM5cjZQmSSm2JdTDNMHiU807Ai9w54iusX0gV4u-AfL7Iup</recordid><startdate>20181015</startdate><enddate>20181015</enddate><creator>Lee, Huei Diana</creator><creator>Mendes, Ana Isabel</creator><creator>Spolaôr, Newton</creator><creator>Oliva, Jefferson Tales</creator><creator>Sabino Parmezan, Antonio Rafael</creator><creator>Wu, Feng Chung</creator><creator>Fonseca-Pinto, Rui</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1574-1293</orcidid><orcidid>https://orcid.org/0000-0003-0748-3693</orcidid></search><sort><creationdate>20181015</creationdate><title>Dermoscopic assisted diagnosis in melanoma: Reviewing results, optimizing methodologies and quantifying empirical guidelines</title><author>Lee, Huei Diana ; Mendes, Ana Isabel ; Spolaôr, Newton ; Oliva, Jefferson Tales ; Sabino Parmezan, Antonio Rafael ; Wu, Feng Chung ; Fonseca-Pinto, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a6e612f185e44456f1248300b3f6e0b8074f9770a3c6e7c63c099eeb0e8f943a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Artificial intelligence</topic><topic>CAD</topic><topic>Computer aided design</topic><topic>Computer-aided diagnosis</topic><topic>Data mining</topic><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Dermoscopy</topic><topic>Diagnosis</topic><topic>Digital computers</topic><topic>Digital imaging</topic><topic>Empirical analysis</topic><topic>Feature extraction</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image processing systems</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Melanoma</topic><topic>Multiple criterion</topic><topic>Physicians</topic><topic>Skin cancer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Huei Diana</creatorcontrib><creatorcontrib>Mendes, Ana Isabel</creatorcontrib><creatorcontrib>Spolaôr, Newton</creatorcontrib><creatorcontrib>Oliva, Jefferson Tales</creatorcontrib><creatorcontrib>Sabino Parmezan, Antonio Rafael</creatorcontrib><creatorcontrib>Wu, Feng Chung</creatorcontrib><creatorcontrib>Fonseca-Pinto, Rui</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Huei Diana</au><au>Mendes, Ana Isabel</au><au>Spolaôr, Newton</au><au>Oliva, Jefferson Tales</au><au>Sabino Parmezan, Antonio Rafael</au><au>Wu, Feng Chung</au><au>Fonseca-Pinto, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dermoscopic assisted diagnosis in melanoma: Reviewing results, optimizing methodologies and quantifying empirical guidelines</atitle><jtitle>Knowledge-based systems</jtitle><date>2018-10-15</date><risdate>2018</risdate><volume>158</volume><spage>9</spage><epage>24</epage><pages>9-24</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>•Review on recent dermoscopy melanoma classification results.•Design and optimization of a melanoma classification method with feature selection.•Proposal of multi-criteria decision analysis to assess melanoma classification.
Early diagnosis is still the most important factor to deal with skin cancer, a disease that challenges physicians and researchers. It has benefited from computer-aided diagnosis methods that successfully combine dermoscopy, Digital Image Processing, and Machine Learning techniques. This paper aims to approximate medical professionals working with dermoscopy to these methods, to join the challenge of melanoma early detection. Accordingly, a proposal for extracting, selecting and combining texture and shape features from dermoscopic images is presented. The Feature Selection task is added to the learning process to potentiate the quality of classification models. Three classical Machine Learning algorithms were applied to differentiate melanoma from non-melanoma images. The models are evaluated by standard performance measures and a multi-criteria decision analysis method. This is the first time such method is used in melanoma diagnosis. As a result, we found a decision tree that performs well and allows the explicit representation and analysis of the knowledge learned from the images. In addition, the competitiveness of our decision models in comparison with literature approaches reviewed in this work encourages further applications of Machine Learning and Feature Selection to assist computer-aided diagnosis.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2018.05.016</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1574-1293</orcidid><orcidid>https://orcid.org/0000-0003-0748-3693</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2018-10, Vol.158, p.9-24 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_journals_2099450119 |
source | Elsevier ScienceDirect Journals |
subjects | Approximation Artificial intelligence CAD Computer aided design Computer-aided diagnosis Data mining Decision analysis Decision trees Dermoscopy Diagnosis Digital computers Digital imaging Empirical analysis Feature extraction Image analysis Image processing Image processing systems Literature reviews Machine learning Medical diagnosis Medical imaging Melanoma Multiple criterion Physicians Skin cancer |
title | Dermoscopic assisted diagnosis in melanoma: Reviewing results, optimizing methodologies and quantifying empirical guidelines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A16%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dermoscopic%20assisted%20diagnosis%20in%20melanoma:%20Reviewing%20results,%20optimizing%20methodologies%20and%20quantifying%20empirical%20guidelines&rft.jtitle=Knowledge-based%20systems&rft.au=Lee,%20Huei%20Diana&rft.date=2018-10-15&rft.volume=158&rft.spage=9&rft.epage=24&rft.pages=9-24&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2018.05.016&rft_dat=%3Cproquest_cross%3E2099450119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099450119&rft_id=info:pmid/&rft_els_id=S0950705118302454&rfr_iscdi=true |