In Situ Grain Boundary Functionalization for Stable and Efficient Inorganic CsPbI2Br Perovskite Solar Cells
The phase instability and large energy loss are two obstacles to achieve stable and efficient inorganic‐CsPbI3−xBrx perovskite solar cells. In this work, stable cubic perovskite (α)‐phase CsPbI2Br is successfully achieved by Pb(Ac)2 functioning at the grain boundary under low temperature. Ac− strong...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2018-09, Vol.8 (25), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 25 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 8 |
creator | Zeng, Zhaobing Zhang, Jing Gan, Xinlei Sun, Hongrui Shang, Minghui Hou, Dagang Lu, Chaojie Chen, Renjie Zhu, Yuejin Han, Liyuan |
description | The phase instability and large energy loss are two obstacles to achieve stable and efficient inorganic‐CsPbI3−xBrx perovskite solar cells. In this work, stable cubic perovskite (α)‐phase CsPbI2Br is successfully achieved by Pb(Ac)2 functioning at the grain boundary under low temperature. Ac− strongly coordinates with CsPbI2Br to stabilize the α‐phase and also make the grain size smaller and film uniform by fast nucleation. PbO is formed in situ at the grain boundary by decomposing Pb(Ac)2 at high‐temperature annealing. The semiconducting PbO effectively passivates the surface states, reduces the interface recombination, and promotes the charge transport in CsPbI2Br perovskite solar cells. A 12% efficiency and good stability are obtained for in situ PbO‐passivated CsPbI2Br solar cells, while Pb(Ac)2‐passivated device exhibits 8.7% performance and the highest stability, much better than the control device with 8.5% performance and inferior stability. This article highlights the extrinsic ionic grain boundary functionalization to achieve stable and efficient inorganic CsPbI3−xBrx materials and the devices.
The in situ grain boundary functionalization in CsPbI2B shows greatly enhanced phase stability and energy states modulation. The energy loss in solar cells is effectively reduced for Pb(Ac)2 and in situ grown PbO modification. The grain boundary functionalization results in efficient and stable CsPbI2Br‐perovskite solar cells. |
doi_str_mv | 10.1002/aenm.201801050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2099420821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099420821</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2990-c2c930cfec94c8b2cfd4ec79758037cb5e2a54e53dbe04d028872485057ce1533</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOOZefQ743HnztSaP29hmYepg-lzSNJVsXTqTVpl_vR3Kzss9Fw4Hzg-hewJjAkAftfWHMQUigYCAKzQgE8KTieRwffGM3qJRjDvoxRUBxgZon3m8dW2HV0E7j2dN50sdTnjZedO6xuva_eizwVUT8LbVRW2x9iVeVJUzzvoWZ74JH9o7g-dxU2R0FvDGhuYr7l1r8bapdcBzW9fxDt1Uuo529H-H6H25eJs_JevXVTafrpMdVQoSQ41iYCprFDeyoKYquTWpSoUElppCWKoFt4KVhQVeApUypVwKEKmxRDA2RA9_vcfQfHY2tvmu6UI_JeYUlOIUJCV9Sv2lvl1tT_kxuEM_PCeQn4HmZ6D5BWg-Xbw8Xz72C96Ea6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099420821</pqid></control><display><type>article</type><title>In Situ Grain Boundary Functionalization for Stable and Efficient Inorganic CsPbI2Br Perovskite Solar Cells</title><source>Wiley Online Library Journals</source><creator>Zeng, Zhaobing ; Zhang, Jing ; Gan, Xinlei ; Sun, Hongrui ; Shang, Minghui ; Hou, Dagang ; Lu, Chaojie ; Chen, Renjie ; Zhu, Yuejin ; Han, Liyuan</creator><creatorcontrib>Zeng, Zhaobing ; Zhang, Jing ; Gan, Xinlei ; Sun, Hongrui ; Shang, Minghui ; Hou, Dagang ; Lu, Chaojie ; Chen, Renjie ; Zhu, Yuejin ; Han, Liyuan</creatorcontrib><description>The phase instability and large energy loss are two obstacles to achieve stable and efficient inorganic‐CsPbI3−xBrx perovskite solar cells. In this work, stable cubic perovskite (α)‐phase CsPbI2Br is successfully achieved by Pb(Ac)2 functioning at the grain boundary under low temperature. Ac− strongly coordinates with CsPbI2Br to stabilize the α‐phase and also make the grain size smaller and film uniform by fast nucleation. PbO is formed in situ at the grain boundary by decomposing Pb(Ac)2 at high‐temperature annealing. The semiconducting PbO effectively passivates the surface states, reduces the interface recombination, and promotes the charge transport in CsPbI2Br perovskite solar cells. A 12% efficiency and good stability are obtained for in situ PbO‐passivated CsPbI2Br solar cells, while Pb(Ac)2‐passivated device exhibits 8.7% performance and the highest stability, much better than the control device with 8.5% performance and inferior stability. This article highlights the extrinsic ionic grain boundary functionalization to achieve stable and efficient inorganic CsPbI3−xBrx materials and the devices.
The in situ grain boundary functionalization in CsPbI2B shows greatly enhanced phase stability and energy states modulation. The energy loss in solar cells is effectively reduced for Pb(Ac)2 and in situ grown PbO modification. The grain boundary functionalization results in efficient and stable CsPbI2Br‐perovskite solar cells.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201801050</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Charge transport ; Control stability ; energy loss ; Grain boundaries ; grain boundary functionalization ; inorganic perovskite solar cells ; Perovskites ; phase stability ; Photovoltaic cells ; Solar cells ; Stability</subject><ispartof>Advanced energy materials, 2018-09, Vol.8 (25), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1328-719X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201801050$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201801050$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zeng, Zhaobing</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Gan, Xinlei</creatorcontrib><creatorcontrib>Sun, Hongrui</creatorcontrib><creatorcontrib>Shang, Minghui</creatorcontrib><creatorcontrib>Hou, Dagang</creatorcontrib><creatorcontrib>Lu, Chaojie</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><creatorcontrib>Zhu, Yuejin</creatorcontrib><creatorcontrib>Han, Liyuan</creatorcontrib><title>In Situ Grain Boundary Functionalization for Stable and Efficient Inorganic CsPbI2Br Perovskite Solar Cells</title><title>Advanced energy materials</title><description>The phase instability and large energy loss are two obstacles to achieve stable and efficient inorganic‐CsPbI3−xBrx perovskite solar cells. In this work, stable cubic perovskite (α)‐phase CsPbI2Br is successfully achieved by Pb(Ac)2 functioning at the grain boundary under low temperature. Ac− strongly coordinates with CsPbI2Br to stabilize the α‐phase and also make the grain size smaller and film uniform by fast nucleation. PbO is formed in situ at the grain boundary by decomposing Pb(Ac)2 at high‐temperature annealing. The semiconducting PbO effectively passivates the surface states, reduces the interface recombination, and promotes the charge transport in CsPbI2Br perovskite solar cells. A 12% efficiency and good stability are obtained for in situ PbO‐passivated CsPbI2Br solar cells, while Pb(Ac)2‐passivated device exhibits 8.7% performance and the highest stability, much better than the control device with 8.5% performance and inferior stability. This article highlights the extrinsic ionic grain boundary functionalization to achieve stable and efficient inorganic CsPbI3−xBrx materials and the devices.
The in situ grain boundary functionalization in CsPbI2B shows greatly enhanced phase stability and energy states modulation. The energy loss in solar cells is effectively reduced for Pb(Ac)2 and in situ grown PbO modification. The grain boundary functionalization results in efficient and stable CsPbI2Br‐perovskite solar cells.</description><subject>Charge transport</subject><subject>Control stability</subject><subject>energy loss</subject><subject>Grain boundaries</subject><subject>grain boundary functionalization</subject><subject>inorganic perovskite solar cells</subject><subject>Perovskites</subject><subject>phase stability</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Stability</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kN1LwzAUxYMoOOZefQ743HnztSaP29hmYepg-lzSNJVsXTqTVpl_vR3Kzss9Fw4Hzg-hewJjAkAftfWHMQUigYCAKzQgE8KTieRwffGM3qJRjDvoxRUBxgZon3m8dW2HV0E7j2dN50sdTnjZedO6xuva_eizwVUT8LbVRW2x9iVeVJUzzvoWZ74JH9o7g-dxU2R0FvDGhuYr7l1r8bapdcBzW9fxDt1Uuo529H-H6H25eJs_JevXVTafrpMdVQoSQ41iYCprFDeyoKYquTWpSoUElppCWKoFt4KVhQVeApUypVwKEKmxRDA2RA9_vcfQfHY2tvmu6UI_JeYUlOIUJCV9Sv2lvl1tT_kxuEM_PCeQn4HmZ6D5BWg-Xbw8Xz72C96Ea6U</recordid><startdate>20180905</startdate><enddate>20180905</enddate><creator>Zeng, Zhaobing</creator><creator>Zhang, Jing</creator><creator>Gan, Xinlei</creator><creator>Sun, Hongrui</creator><creator>Shang, Minghui</creator><creator>Hou, Dagang</creator><creator>Lu, Chaojie</creator><creator>Chen, Renjie</creator><creator>Zhu, Yuejin</creator><creator>Han, Liyuan</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1328-719X</orcidid></search><sort><creationdate>20180905</creationdate><title>In Situ Grain Boundary Functionalization for Stable and Efficient Inorganic CsPbI2Br Perovskite Solar Cells</title><author>Zeng, Zhaobing ; Zhang, Jing ; Gan, Xinlei ; Sun, Hongrui ; Shang, Minghui ; Hou, Dagang ; Lu, Chaojie ; Chen, Renjie ; Zhu, Yuejin ; Han, Liyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2990-c2c930cfec94c8b2cfd4ec79758037cb5e2a54e53dbe04d028872485057ce1533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge transport</topic><topic>Control stability</topic><topic>energy loss</topic><topic>Grain boundaries</topic><topic>grain boundary functionalization</topic><topic>inorganic perovskite solar cells</topic><topic>Perovskites</topic><topic>phase stability</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Zhaobing</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Gan, Xinlei</creatorcontrib><creatorcontrib>Sun, Hongrui</creatorcontrib><creatorcontrib>Shang, Minghui</creatorcontrib><creatorcontrib>Hou, Dagang</creatorcontrib><creatorcontrib>Lu, Chaojie</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><creatorcontrib>Zhu, Yuejin</creatorcontrib><creatorcontrib>Han, Liyuan</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Zhaobing</au><au>Zhang, Jing</au><au>Gan, Xinlei</au><au>Sun, Hongrui</au><au>Shang, Minghui</au><au>Hou, Dagang</au><au>Lu, Chaojie</au><au>Chen, Renjie</au><au>Zhu, Yuejin</au><au>Han, Liyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Grain Boundary Functionalization for Stable and Efficient Inorganic CsPbI2Br Perovskite Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><date>2018-09-05</date><risdate>2018</risdate><volume>8</volume><issue>25</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The phase instability and large energy loss are two obstacles to achieve stable and efficient inorganic‐CsPbI3−xBrx perovskite solar cells. In this work, stable cubic perovskite (α)‐phase CsPbI2Br is successfully achieved by Pb(Ac)2 functioning at the grain boundary under low temperature. Ac− strongly coordinates with CsPbI2Br to stabilize the α‐phase and also make the grain size smaller and film uniform by fast nucleation. PbO is formed in situ at the grain boundary by decomposing Pb(Ac)2 at high‐temperature annealing. The semiconducting PbO effectively passivates the surface states, reduces the interface recombination, and promotes the charge transport in CsPbI2Br perovskite solar cells. A 12% efficiency and good stability are obtained for in situ PbO‐passivated CsPbI2Br solar cells, while Pb(Ac)2‐passivated device exhibits 8.7% performance and the highest stability, much better than the control device with 8.5% performance and inferior stability. This article highlights the extrinsic ionic grain boundary functionalization to achieve stable and efficient inorganic CsPbI3−xBrx materials and the devices.
The in situ grain boundary functionalization in CsPbI2B shows greatly enhanced phase stability and energy states modulation. The energy loss in solar cells is effectively reduced for Pb(Ac)2 and in situ grown PbO modification. The grain boundary functionalization results in efficient and stable CsPbI2Br‐perovskite solar cells.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201801050</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1328-719X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2018-09, Vol.8 (25), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2099420821 |
source | Wiley Online Library Journals |
subjects | Charge transport Control stability energy loss Grain boundaries grain boundary functionalization inorganic perovskite solar cells Perovskites phase stability Photovoltaic cells Solar cells Stability |
title | In Situ Grain Boundary Functionalization for Stable and Efficient Inorganic CsPbI2Br Perovskite Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Grain%20Boundary%20Functionalization%20for%20Stable%20and%20Efficient%20Inorganic%20CsPbI2Br%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Zeng,%20Zhaobing&rft.date=2018-09-05&rft.volume=8&rft.issue=25&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201801050&rft_dat=%3Cproquest_wiley%3E2099420821%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099420821&rft_id=info:pmid/&rfr_iscdi=true |