In Situ Grain Boundary Functionalization for Stable and Efficient Inorganic CsPbI2Br Perovskite Solar Cells

The phase instability and large energy loss are two obstacles to achieve stable and efficient inorganic‐CsPbI3−xBrx perovskite solar cells. In this work, stable cubic perovskite (α)‐phase CsPbI2Br is successfully achieved by Pb(Ac)2 functioning at the grain boundary under low temperature. Ac− strong...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2018-09, Vol.8 (25), p.n/a
Hauptverfasser: Zeng, Zhaobing, Zhang, Jing, Gan, Xinlei, Sun, Hongrui, Shang, Minghui, Hou, Dagang, Lu, Chaojie, Chen, Renjie, Zhu, Yuejin, Han, Liyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page
container_title Advanced energy materials
container_volume 8
creator Zeng, Zhaobing
Zhang, Jing
Gan, Xinlei
Sun, Hongrui
Shang, Minghui
Hou, Dagang
Lu, Chaojie
Chen, Renjie
Zhu, Yuejin
Han, Liyuan
description The phase instability and large energy loss are two obstacles to achieve stable and efficient inorganic‐CsPbI3−xBrx perovskite solar cells. In this work, stable cubic perovskite (α)‐phase CsPbI2Br is successfully achieved by Pb(Ac)2 functioning at the grain boundary under low temperature. Ac− strongly coordinates with CsPbI2Br to stabilize the α‐phase and also make the grain size smaller and film uniform by fast nucleation. PbO is formed in situ at the grain boundary by decomposing Pb(Ac)2 at high‐temperature annealing. The semiconducting PbO effectively passivates the surface states, reduces the interface recombination, and promotes the charge transport in CsPbI2Br perovskite solar cells. A 12% efficiency and good stability are obtained for in situ PbO‐passivated CsPbI2Br solar cells, while Pb(Ac)2‐passivated device exhibits 8.7% performance and the highest stability, much better than the control device with 8.5% performance and inferior stability. This article highlights the extrinsic ionic grain boundary functionalization to achieve stable and efficient inorganic CsPbI3−xBrx materials and the devices. The in situ grain boundary functionalization in CsPbI2B shows greatly enhanced phase stability and energy states modulation. The energy loss in solar cells is effectively reduced for Pb(Ac)2 and in situ grown PbO modification. The grain boundary functionalization results in efficient and stable CsPbI2Br‐perovskite solar cells.
doi_str_mv 10.1002/aenm.201801050
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2099420821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099420821</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2990-c2c930cfec94c8b2cfd4ec79758037cb5e2a54e53dbe04d028872485057ce1533</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOOZefQ743HnztSaP29hmYepg-lzSNJVsXTqTVpl_vR3Kzss9Fw4Hzg-hewJjAkAftfWHMQUigYCAKzQgE8KTieRwffGM3qJRjDvoxRUBxgZon3m8dW2HV0E7j2dN50sdTnjZedO6xuva_eizwVUT8LbVRW2x9iVeVJUzzvoWZ74JH9o7g-dxU2R0FvDGhuYr7l1r8bapdcBzW9fxDt1Uuo529H-H6H25eJs_JevXVTafrpMdVQoSQ41iYCprFDeyoKYquTWpSoUElppCWKoFt4KVhQVeApUypVwKEKmxRDA2RA9_vcfQfHY2tvmu6UI_JeYUlOIUJCV9Sv2lvl1tT_kxuEM_PCeQn4HmZ6D5BWg-Xbw8Xz72C96Ea6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099420821</pqid></control><display><type>article</type><title>In Situ Grain Boundary Functionalization for Stable and Efficient Inorganic CsPbI2Br Perovskite Solar Cells</title><source>Wiley Online Library Journals</source><creator>Zeng, Zhaobing ; Zhang, Jing ; Gan, Xinlei ; Sun, Hongrui ; Shang, Minghui ; Hou, Dagang ; Lu, Chaojie ; Chen, Renjie ; Zhu, Yuejin ; Han, Liyuan</creator><creatorcontrib>Zeng, Zhaobing ; Zhang, Jing ; Gan, Xinlei ; Sun, Hongrui ; Shang, Minghui ; Hou, Dagang ; Lu, Chaojie ; Chen, Renjie ; Zhu, Yuejin ; Han, Liyuan</creatorcontrib><description>The phase instability and large energy loss are two obstacles to achieve stable and efficient inorganic‐CsPbI3−xBrx perovskite solar cells. In this work, stable cubic perovskite (α)‐phase CsPbI2Br is successfully achieved by Pb(Ac)2 functioning at the grain boundary under low temperature. Ac− strongly coordinates with CsPbI2Br to stabilize the α‐phase and also make the grain size smaller and film uniform by fast nucleation. PbO is formed in situ at the grain boundary by decomposing Pb(Ac)2 at high‐temperature annealing. The semiconducting PbO effectively passivates the surface states, reduces the interface recombination, and promotes the charge transport in CsPbI2Br perovskite solar cells. A 12% efficiency and good stability are obtained for in situ PbO‐passivated CsPbI2Br solar cells, while Pb(Ac)2‐passivated device exhibits 8.7% performance and the highest stability, much better than the control device with 8.5% performance and inferior stability. This article highlights the extrinsic ionic grain boundary functionalization to achieve stable and efficient inorganic CsPbI3−xBrx materials and the devices. The in situ grain boundary functionalization in CsPbI2B shows greatly enhanced phase stability and energy states modulation. The energy loss in solar cells is effectively reduced for Pb(Ac)2 and in situ grown PbO modification. The grain boundary functionalization results in efficient and stable CsPbI2Br‐perovskite solar cells.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201801050</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Charge transport ; Control stability ; energy loss ; Grain boundaries ; grain boundary functionalization ; inorganic perovskite solar cells ; Perovskites ; phase stability ; Photovoltaic cells ; Solar cells ; Stability</subject><ispartof>Advanced energy materials, 2018-09, Vol.8 (25), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1328-719X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201801050$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201801050$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zeng, Zhaobing</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Gan, Xinlei</creatorcontrib><creatorcontrib>Sun, Hongrui</creatorcontrib><creatorcontrib>Shang, Minghui</creatorcontrib><creatorcontrib>Hou, Dagang</creatorcontrib><creatorcontrib>Lu, Chaojie</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><creatorcontrib>Zhu, Yuejin</creatorcontrib><creatorcontrib>Han, Liyuan</creatorcontrib><title>In Situ Grain Boundary Functionalization for Stable and Efficient Inorganic CsPbI2Br Perovskite Solar Cells</title><title>Advanced energy materials</title><description>The phase instability and large energy loss are two obstacles to achieve stable and efficient inorganic‐CsPbI3−xBrx perovskite solar cells. In this work, stable cubic perovskite (α)‐phase CsPbI2Br is successfully achieved by Pb(Ac)2 functioning at the grain boundary under low temperature. Ac− strongly coordinates with CsPbI2Br to stabilize the α‐phase and also make the grain size smaller and film uniform by fast nucleation. PbO is formed in situ at the grain boundary by decomposing Pb(Ac)2 at high‐temperature annealing. The semiconducting PbO effectively passivates the surface states, reduces the interface recombination, and promotes the charge transport in CsPbI2Br perovskite solar cells. A 12% efficiency and good stability are obtained for in situ PbO‐passivated CsPbI2Br solar cells, while Pb(Ac)2‐passivated device exhibits 8.7% performance and the highest stability, much better than the control device with 8.5% performance and inferior stability. This article highlights the extrinsic ionic grain boundary functionalization to achieve stable and efficient inorganic CsPbI3−xBrx materials and the devices. The in situ grain boundary functionalization in CsPbI2B shows greatly enhanced phase stability and energy states modulation. The energy loss in solar cells is effectively reduced for Pb(Ac)2 and in situ grown PbO modification. The grain boundary functionalization results in efficient and stable CsPbI2Br‐perovskite solar cells.</description><subject>Charge transport</subject><subject>Control stability</subject><subject>energy loss</subject><subject>Grain boundaries</subject><subject>grain boundary functionalization</subject><subject>inorganic perovskite solar cells</subject><subject>Perovskites</subject><subject>phase stability</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Stability</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kN1LwzAUxYMoOOZefQ743HnztSaP29hmYepg-lzSNJVsXTqTVpl_vR3Kzss9Fw4Hzg-hewJjAkAftfWHMQUigYCAKzQgE8KTieRwffGM3qJRjDvoxRUBxgZon3m8dW2HV0E7j2dN50sdTnjZedO6xuva_eizwVUT8LbVRW2x9iVeVJUzzvoWZ74JH9o7g-dxU2R0FvDGhuYr7l1r8bapdcBzW9fxDt1Uuo529H-H6H25eJs_JevXVTafrpMdVQoSQ41iYCprFDeyoKYquTWpSoUElppCWKoFt4KVhQVeApUypVwKEKmxRDA2RA9_vcfQfHY2tvmu6UI_JeYUlOIUJCV9Sv2lvl1tT_kxuEM_PCeQn4HmZ6D5BWg-Xbw8Xz72C96Ea6U</recordid><startdate>20180905</startdate><enddate>20180905</enddate><creator>Zeng, Zhaobing</creator><creator>Zhang, Jing</creator><creator>Gan, Xinlei</creator><creator>Sun, Hongrui</creator><creator>Shang, Minghui</creator><creator>Hou, Dagang</creator><creator>Lu, Chaojie</creator><creator>Chen, Renjie</creator><creator>Zhu, Yuejin</creator><creator>Han, Liyuan</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1328-719X</orcidid></search><sort><creationdate>20180905</creationdate><title>In Situ Grain Boundary Functionalization for Stable and Efficient Inorganic CsPbI2Br Perovskite Solar Cells</title><author>Zeng, Zhaobing ; Zhang, Jing ; Gan, Xinlei ; Sun, Hongrui ; Shang, Minghui ; Hou, Dagang ; Lu, Chaojie ; Chen, Renjie ; Zhu, Yuejin ; Han, Liyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2990-c2c930cfec94c8b2cfd4ec79758037cb5e2a54e53dbe04d028872485057ce1533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge transport</topic><topic>Control stability</topic><topic>energy loss</topic><topic>Grain boundaries</topic><topic>grain boundary functionalization</topic><topic>inorganic perovskite solar cells</topic><topic>Perovskites</topic><topic>phase stability</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Zhaobing</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Gan, Xinlei</creatorcontrib><creatorcontrib>Sun, Hongrui</creatorcontrib><creatorcontrib>Shang, Minghui</creatorcontrib><creatorcontrib>Hou, Dagang</creatorcontrib><creatorcontrib>Lu, Chaojie</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><creatorcontrib>Zhu, Yuejin</creatorcontrib><creatorcontrib>Han, Liyuan</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Zhaobing</au><au>Zhang, Jing</au><au>Gan, Xinlei</au><au>Sun, Hongrui</au><au>Shang, Minghui</au><au>Hou, Dagang</au><au>Lu, Chaojie</au><au>Chen, Renjie</au><au>Zhu, Yuejin</au><au>Han, Liyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Grain Boundary Functionalization for Stable and Efficient Inorganic CsPbI2Br Perovskite Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><date>2018-09-05</date><risdate>2018</risdate><volume>8</volume><issue>25</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The phase instability and large energy loss are two obstacles to achieve stable and efficient inorganic‐CsPbI3−xBrx perovskite solar cells. In this work, stable cubic perovskite (α)‐phase CsPbI2Br is successfully achieved by Pb(Ac)2 functioning at the grain boundary under low temperature. Ac− strongly coordinates with CsPbI2Br to stabilize the α‐phase and also make the grain size smaller and film uniform by fast nucleation. PbO is formed in situ at the grain boundary by decomposing Pb(Ac)2 at high‐temperature annealing. The semiconducting PbO effectively passivates the surface states, reduces the interface recombination, and promotes the charge transport in CsPbI2Br perovskite solar cells. A 12% efficiency and good stability are obtained for in situ PbO‐passivated CsPbI2Br solar cells, while Pb(Ac)2‐passivated device exhibits 8.7% performance and the highest stability, much better than the control device with 8.5% performance and inferior stability. This article highlights the extrinsic ionic grain boundary functionalization to achieve stable and efficient inorganic CsPbI3−xBrx materials and the devices. The in situ grain boundary functionalization in CsPbI2B shows greatly enhanced phase stability and energy states modulation. The energy loss in solar cells is effectively reduced for Pb(Ac)2 and in situ grown PbO modification. The grain boundary functionalization results in efficient and stable CsPbI2Br‐perovskite solar cells.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201801050</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1328-719X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2018-09, Vol.8 (25), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2099420821
source Wiley Online Library Journals
subjects Charge transport
Control stability
energy loss
Grain boundaries
grain boundary functionalization
inorganic perovskite solar cells
Perovskites
phase stability
Photovoltaic cells
Solar cells
Stability
title In Situ Grain Boundary Functionalization for Stable and Efficient Inorganic CsPbI2Br Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Grain%20Boundary%20Functionalization%20for%20Stable%20and%20Efficient%20Inorganic%20CsPbI2Br%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Zeng,%20Zhaobing&rft.date=2018-09-05&rft.volume=8&rft.issue=25&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201801050&rft_dat=%3Cproquest_wiley%3E2099420821%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099420821&rft_id=info:pmid/&rfr_iscdi=true