In Situ “Chainmail Catalyst” Assembly in Low‐Tortuosity, Hierarchical Carbon Frameworks for Efficient and Stable Hydrogen Generation

The chainmail catalysts (transition metals or metal alloys encapsulated in carbon) are regarded as stable and efficient electrocatalysts for hydrogen generation. However, the fabrication of chainmail catalysts usually involves complex chemical vapor deposition (CVD) or prolonged calcination in a fur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2018-09, Vol.8 (25), p.n/a
Hauptverfasser: Li, Yiju, Gao, Tingting, Yao, Yonggang, Liu, Zhenyu, Kuang, Yudi, Chen, Chaoji, Song, Jianwei, Xu, Shaomao, Hitz, Emily M., Liu, Boyang, Jacob, Rohit J., Zachariah, Michael R., Wang, Guofeng, Hu, Liangbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page
container_title Advanced energy materials
container_volume 8
creator Li, Yiju
Gao, Tingting
Yao, Yonggang
Liu, Zhenyu
Kuang, Yudi
Chen, Chaoji
Song, Jianwei
Xu, Shaomao
Hitz, Emily M.
Liu, Boyang
Jacob, Rohit J.
Zachariah, Michael R.
Wang, Guofeng
Hu, Liangbing
description The chainmail catalysts (transition metals or metal alloys encapsulated in carbon) are regarded as stable and efficient electrocatalysts for hydrogen generation. However, the fabrication of chainmail catalysts usually involves complex chemical vapor deposition (CVD) or prolonged calcination in a furnace, and the slurry‐based electrode assembly of the chainmail catalysts often suffers from inferior mass transfer and an underutilized active surface. In this work, a freestanding wood‐based open carbon framework is designed embedded with nitrogen (N) doped, few‐graphene‐layer‐encapsulated nickel iron (NiFe) alloy nanoparticles (N‐C‐NiFe). 3D wood‐derived carbon framework with numerous open and low‐tortuosity lumens, which are decorated with carbon nanotubes (CNTs) “villi”, can facilitate electrolyte permeation and hydrogen gas removal. The chainmail catalysts of the N‐C‐NiFe are uniformly in situ assembled on the CNT “villi” using a rapid heat shock treatment. The high heating and quenching rates of the heat shock method lead to formation of the well‐dispersed ultrafine nanoparticles. The self‐supported wood‐based carbon framework decorated with the chainmail catalyst displays high electrocatalytic activity and superior cycling durability for hydrogen evolution. The unique heat shock method offers a promising strategy to rapidly synthesize well‐dispersed binary and polynary metallic nanoparticles in porous matrices for high‐efficiency electrochemical energy storage and conversion. The rapid in situ self‐assembly of the core‐shell N‐C‐NiFe nanoparticles in a porous carbonized wood‐based framework is first achieved using the heat shock treatment method. The self‐supported, low‐tortuosity wood‐based carbon framework decorated with the chainmail catalyst of N‐C‐NiFe displays high electrocatalytic activity and superior long‐term cycling stability for hydrogen generation.
doi_str_mv 10.1002/aenm.201801289
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2099420624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099420624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3549-427564afdf196a5dcec33c78f30e3f878ae3a4f101020cf9657b4febf773afa43</originalsourceid><addsrcrecordid>eNqFkLtOAkEUhjdGEwnSWk9iKzg39lISwi1BLcB6c3aYkcHdGZwZQrajtvIB9OV4EiEYLD3NOcX3_Sf5o-iW4A7BmD6ANFWHYpJiQtPsImqQmPB2nHJ8eb4ZvY5a3q_wYXhGMGON6GNi0EyHDdrvvvpL0KYCXaI-BChrH_a7b9TzXlZFWSNt0NRu97vPuXVhY70O9T0aa-nAiaUWcNRcYQ0aOqjk1ro3j5R1aKCUFlqagMAs0CxAUUo0rhfOvkqDRtIcEoK25ia6UlB62frdzehlOJj3x-3p82jS703bgnV51uY06cYc1EKRLIbuQkjBmEhSxbBkKk1SkAy4IphgioXK4m5ScCULlSQMFHDWjO5OuWtn3zfSh3xlN84cXuYUZxmnOKZHqnOihLPeO6nytdMVuDonOD9Wnh8rz8-VH4TsJGx1Ket_6Lw3eHr8c38AUWmKAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099420624</pqid></control><display><type>article</type><title>In Situ “Chainmail Catalyst” Assembly in Low‐Tortuosity, Hierarchical Carbon Frameworks for Efficient and Stable Hydrogen Generation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Yiju ; Gao, Tingting ; Yao, Yonggang ; Liu, Zhenyu ; Kuang, Yudi ; Chen, Chaoji ; Song, Jianwei ; Xu, Shaomao ; Hitz, Emily M. ; Liu, Boyang ; Jacob, Rohit J. ; Zachariah, Michael R. ; Wang, Guofeng ; Hu, Liangbing</creator><creatorcontrib>Li, Yiju ; Gao, Tingting ; Yao, Yonggang ; Liu, Zhenyu ; Kuang, Yudi ; Chen, Chaoji ; Song, Jianwei ; Xu, Shaomao ; Hitz, Emily M. ; Liu, Boyang ; Jacob, Rohit J. ; Zachariah, Michael R. ; Wang, Guofeng ; Hu, Liangbing</creatorcontrib><description>The chainmail catalysts (transition metals or metal alloys encapsulated in carbon) are regarded as stable and efficient electrocatalysts for hydrogen generation. However, the fabrication of chainmail catalysts usually involves complex chemical vapor deposition (CVD) or prolonged calcination in a furnace, and the slurry‐based electrode assembly of the chainmail catalysts often suffers from inferior mass transfer and an underutilized active surface. In this work, a freestanding wood‐based open carbon framework is designed embedded with nitrogen (N) doped, few‐graphene‐layer‐encapsulated nickel iron (NiFe) alloy nanoparticles (N‐C‐NiFe). 3D wood‐derived carbon framework with numerous open and low‐tortuosity lumens, which are decorated with carbon nanotubes (CNTs) “villi”, can facilitate electrolyte permeation and hydrogen gas removal. The chainmail catalysts of the N‐C‐NiFe are uniformly in situ assembled on the CNT “villi” using a rapid heat shock treatment. The high heating and quenching rates of the heat shock method lead to formation of the well‐dispersed ultrafine nanoparticles. The self‐supported wood‐based carbon framework decorated with the chainmail catalyst displays high electrocatalytic activity and superior cycling durability for hydrogen evolution. The unique heat shock method offers a promising strategy to rapidly synthesize well‐dispersed binary and polynary metallic nanoparticles in porous matrices for high‐efficiency electrochemical energy storage and conversion. The rapid in situ self‐assembly of the core‐shell N‐C‐NiFe nanoparticles in a porous carbonized wood‐based framework is first achieved using the heat shock treatment method. The self‐supported, low‐tortuosity wood‐based carbon framework decorated with the chainmail catalyst of N‐C‐NiFe displays high electrocatalytic activity and superior long‐term cycling stability for hydrogen generation.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201801289</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Assembly ; Carbon ; Carbon nanotubes ; Catalysis ; Catalysts ; chainmail catalysts ; Chains ; Chemical vapor deposition ; Dispersion ; Electrocatalysts ; Encapsulation ; Energy conversion efficiency ; Energy storage ; Heat shock ; Heat treatment ; Hydrogen ; Hydrogen evolution ; hydrogen evolution reaction ; Hydrogen production ; Hydrogen storage ; in situ self‐assembly ; Intermetallic compounds ; Iron compounds ; low tortuosity ; Mass transfer ; Nanoparticles ; Nickel base alloys ; Nickel compounds ; Nitrogen ; Organic chemistry ; Slurries ; Transition metals</subject><ispartof>Advanced energy materials, 2018-09, Vol.8 (25), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3549-427564afdf196a5dcec33c78f30e3f878ae3a4f101020cf9657b4febf773afa43</citedby><cites>FETCH-LOGICAL-c3549-427564afdf196a5dcec33c78f30e3f878ae3a4f101020cf9657b4febf773afa43</cites><orcidid>0000-0001-9240-5686 ; 0000-0002-9456-9315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201801289$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201801289$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Li, Yiju</creatorcontrib><creatorcontrib>Gao, Tingting</creatorcontrib><creatorcontrib>Yao, Yonggang</creatorcontrib><creatorcontrib>Liu, Zhenyu</creatorcontrib><creatorcontrib>Kuang, Yudi</creatorcontrib><creatorcontrib>Chen, Chaoji</creatorcontrib><creatorcontrib>Song, Jianwei</creatorcontrib><creatorcontrib>Xu, Shaomao</creatorcontrib><creatorcontrib>Hitz, Emily M.</creatorcontrib><creatorcontrib>Liu, Boyang</creatorcontrib><creatorcontrib>Jacob, Rohit J.</creatorcontrib><creatorcontrib>Zachariah, Michael R.</creatorcontrib><creatorcontrib>Wang, Guofeng</creatorcontrib><creatorcontrib>Hu, Liangbing</creatorcontrib><title>In Situ “Chainmail Catalyst” Assembly in Low‐Tortuosity, Hierarchical Carbon Frameworks for Efficient and Stable Hydrogen Generation</title><title>Advanced energy materials</title><description>The chainmail catalysts (transition metals or metal alloys encapsulated in carbon) are regarded as stable and efficient electrocatalysts for hydrogen generation. However, the fabrication of chainmail catalysts usually involves complex chemical vapor deposition (CVD) or prolonged calcination in a furnace, and the slurry‐based electrode assembly of the chainmail catalysts often suffers from inferior mass transfer and an underutilized active surface. In this work, a freestanding wood‐based open carbon framework is designed embedded with nitrogen (N) doped, few‐graphene‐layer‐encapsulated nickel iron (NiFe) alloy nanoparticles (N‐C‐NiFe). 3D wood‐derived carbon framework with numerous open and low‐tortuosity lumens, which are decorated with carbon nanotubes (CNTs) “villi”, can facilitate electrolyte permeation and hydrogen gas removal. The chainmail catalysts of the N‐C‐NiFe are uniformly in situ assembled on the CNT “villi” using a rapid heat shock treatment. The high heating and quenching rates of the heat shock method lead to formation of the well‐dispersed ultrafine nanoparticles. The self‐supported wood‐based carbon framework decorated with the chainmail catalyst displays high electrocatalytic activity and superior cycling durability for hydrogen evolution. The unique heat shock method offers a promising strategy to rapidly synthesize well‐dispersed binary and polynary metallic nanoparticles in porous matrices for high‐efficiency electrochemical energy storage and conversion. The rapid in situ self‐assembly of the core‐shell N‐C‐NiFe nanoparticles in a porous carbonized wood‐based framework is first achieved using the heat shock treatment method. The self‐supported, low‐tortuosity wood‐based carbon framework decorated with the chainmail catalyst of N‐C‐NiFe displays high electrocatalytic activity and superior long‐term cycling stability for hydrogen generation.</description><subject>Assembly</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>chainmail catalysts</subject><subject>Chains</subject><subject>Chemical vapor deposition</subject><subject>Dispersion</subject><subject>Electrocatalysts</subject><subject>Encapsulation</subject><subject>Energy conversion efficiency</subject><subject>Energy storage</subject><subject>Heat shock</subject><subject>Heat treatment</subject><subject>Hydrogen</subject><subject>Hydrogen evolution</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen production</subject><subject>Hydrogen storage</subject><subject>in situ self‐assembly</subject><subject>Intermetallic compounds</subject><subject>Iron compounds</subject><subject>low tortuosity</subject><subject>Mass transfer</subject><subject>Nanoparticles</subject><subject>Nickel base alloys</subject><subject>Nickel compounds</subject><subject>Nitrogen</subject><subject>Organic chemistry</subject><subject>Slurries</subject><subject>Transition metals</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOAkEUhjdGEwnSWk9iKzg39lISwi1BLcB6c3aYkcHdGZwZQrajtvIB9OV4EiEYLD3NOcX3_Sf5o-iW4A7BmD6ANFWHYpJiQtPsImqQmPB2nHJ8eb4ZvY5a3q_wYXhGMGON6GNi0EyHDdrvvvpL0KYCXaI-BChrH_a7b9TzXlZFWSNt0NRu97vPuXVhY70O9T0aa-nAiaUWcNRcYQ0aOqjk1ro3j5R1aKCUFlqagMAs0CxAUUo0rhfOvkqDRtIcEoK25ia6UlB62frdzehlOJj3x-3p82jS703bgnV51uY06cYc1EKRLIbuQkjBmEhSxbBkKk1SkAy4IphgioXK4m5ScCULlSQMFHDWjO5OuWtn3zfSh3xlN84cXuYUZxmnOKZHqnOihLPeO6nytdMVuDonOD9Wnh8rz8-VH4TsJGx1Ket_6Lw3eHr8c38AUWmKAw</recordid><startdate>20180905</startdate><enddate>20180905</enddate><creator>Li, Yiju</creator><creator>Gao, Tingting</creator><creator>Yao, Yonggang</creator><creator>Liu, Zhenyu</creator><creator>Kuang, Yudi</creator><creator>Chen, Chaoji</creator><creator>Song, Jianwei</creator><creator>Xu, Shaomao</creator><creator>Hitz, Emily M.</creator><creator>Liu, Boyang</creator><creator>Jacob, Rohit J.</creator><creator>Zachariah, Michael R.</creator><creator>Wang, Guofeng</creator><creator>Hu, Liangbing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9240-5686</orcidid><orcidid>https://orcid.org/0000-0002-9456-9315</orcidid></search><sort><creationdate>20180905</creationdate><title>In Situ “Chainmail Catalyst” Assembly in Low‐Tortuosity, Hierarchical Carbon Frameworks for Efficient and Stable Hydrogen Generation</title><author>Li, Yiju ; Gao, Tingting ; Yao, Yonggang ; Liu, Zhenyu ; Kuang, Yudi ; Chen, Chaoji ; Song, Jianwei ; Xu, Shaomao ; Hitz, Emily M. ; Liu, Boyang ; Jacob, Rohit J. ; Zachariah, Michael R. ; Wang, Guofeng ; Hu, Liangbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3549-427564afdf196a5dcec33c78f30e3f878ae3a4f101020cf9657b4febf773afa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Assembly</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>chainmail catalysts</topic><topic>Chains</topic><topic>Chemical vapor deposition</topic><topic>Dispersion</topic><topic>Electrocatalysts</topic><topic>Encapsulation</topic><topic>Energy conversion efficiency</topic><topic>Energy storage</topic><topic>Heat shock</topic><topic>Heat treatment</topic><topic>Hydrogen</topic><topic>Hydrogen evolution</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen production</topic><topic>Hydrogen storage</topic><topic>in situ self‐assembly</topic><topic>Intermetallic compounds</topic><topic>Iron compounds</topic><topic>low tortuosity</topic><topic>Mass transfer</topic><topic>Nanoparticles</topic><topic>Nickel base alloys</topic><topic>Nickel compounds</topic><topic>Nitrogen</topic><topic>Organic chemistry</topic><topic>Slurries</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yiju</creatorcontrib><creatorcontrib>Gao, Tingting</creatorcontrib><creatorcontrib>Yao, Yonggang</creatorcontrib><creatorcontrib>Liu, Zhenyu</creatorcontrib><creatorcontrib>Kuang, Yudi</creatorcontrib><creatorcontrib>Chen, Chaoji</creatorcontrib><creatorcontrib>Song, Jianwei</creatorcontrib><creatorcontrib>Xu, Shaomao</creatorcontrib><creatorcontrib>Hitz, Emily M.</creatorcontrib><creatorcontrib>Liu, Boyang</creatorcontrib><creatorcontrib>Jacob, Rohit J.</creatorcontrib><creatorcontrib>Zachariah, Michael R.</creatorcontrib><creatorcontrib>Wang, Guofeng</creatorcontrib><creatorcontrib>Hu, Liangbing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yiju</au><au>Gao, Tingting</au><au>Yao, Yonggang</au><au>Liu, Zhenyu</au><au>Kuang, Yudi</au><au>Chen, Chaoji</au><au>Song, Jianwei</au><au>Xu, Shaomao</au><au>Hitz, Emily M.</au><au>Liu, Boyang</au><au>Jacob, Rohit J.</au><au>Zachariah, Michael R.</au><au>Wang, Guofeng</au><au>Hu, Liangbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ “Chainmail Catalyst” Assembly in Low‐Tortuosity, Hierarchical Carbon Frameworks for Efficient and Stable Hydrogen Generation</atitle><jtitle>Advanced energy materials</jtitle><date>2018-09-05</date><risdate>2018</risdate><volume>8</volume><issue>25</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The chainmail catalysts (transition metals or metal alloys encapsulated in carbon) are regarded as stable and efficient electrocatalysts for hydrogen generation. However, the fabrication of chainmail catalysts usually involves complex chemical vapor deposition (CVD) or prolonged calcination in a furnace, and the slurry‐based electrode assembly of the chainmail catalysts often suffers from inferior mass transfer and an underutilized active surface. In this work, a freestanding wood‐based open carbon framework is designed embedded with nitrogen (N) doped, few‐graphene‐layer‐encapsulated nickel iron (NiFe) alloy nanoparticles (N‐C‐NiFe). 3D wood‐derived carbon framework with numerous open and low‐tortuosity lumens, which are decorated with carbon nanotubes (CNTs) “villi”, can facilitate electrolyte permeation and hydrogen gas removal. The chainmail catalysts of the N‐C‐NiFe are uniformly in situ assembled on the CNT “villi” using a rapid heat shock treatment. The high heating and quenching rates of the heat shock method lead to formation of the well‐dispersed ultrafine nanoparticles. The self‐supported wood‐based carbon framework decorated with the chainmail catalyst displays high electrocatalytic activity and superior cycling durability for hydrogen evolution. The unique heat shock method offers a promising strategy to rapidly synthesize well‐dispersed binary and polynary metallic nanoparticles in porous matrices for high‐efficiency electrochemical energy storage and conversion. The rapid in situ self‐assembly of the core‐shell N‐C‐NiFe nanoparticles in a porous carbonized wood‐based framework is first achieved using the heat shock treatment method. The self‐supported, low‐tortuosity wood‐based carbon framework decorated with the chainmail catalyst of N‐C‐NiFe displays high electrocatalytic activity and superior long‐term cycling stability for hydrogen generation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201801289</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9240-5686</orcidid><orcidid>https://orcid.org/0000-0002-9456-9315</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2018-09, Vol.8 (25), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2099420624
source Wiley Online Library Journals Frontfile Complete
subjects Assembly
Carbon
Carbon nanotubes
Catalysis
Catalysts
chainmail catalysts
Chains
Chemical vapor deposition
Dispersion
Electrocatalysts
Encapsulation
Energy conversion efficiency
Energy storage
Heat shock
Heat treatment
Hydrogen
Hydrogen evolution
hydrogen evolution reaction
Hydrogen production
Hydrogen storage
in situ self‐assembly
Intermetallic compounds
Iron compounds
low tortuosity
Mass transfer
Nanoparticles
Nickel base alloys
Nickel compounds
Nitrogen
Organic chemistry
Slurries
Transition metals
title In Situ “Chainmail Catalyst” Assembly in Low‐Tortuosity, Hierarchical Carbon Frameworks for Efficient and Stable Hydrogen Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20%E2%80%9CChainmail%20Catalyst%E2%80%9D%20Assembly%20in%20Low%E2%80%90Tortuosity,%20Hierarchical%20Carbon%20Frameworks%20for%20Efficient%20and%20Stable%20Hydrogen%20Generation&rft.jtitle=Advanced%20energy%20materials&rft.au=Li,%20Yiju&rft.date=2018-09-05&rft.volume=8&rft.issue=25&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201801289&rft_dat=%3Cproquest_cross%3E2099420624%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099420624&rft_id=info:pmid/&rfr_iscdi=true