Metal–Organic Framework Derived Honeycomb Co9S8@C Composites for High‐Performance Supercapacitors

Unique nanostructures always lead to extraordinary electrochemical energy storage performance. Here, the authors report a new strategy for using Metal‐organic frameworks (MOFs) derived cobalt sulfide in a carbon matrix with a 3D honeycombed porous structure, resulting in a high‐performance supercapa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2018-09, Vol.8 (25), p.n/a
Hauptverfasser: Sun, Shixiong, Luo, Jiahuan, Qian, Yong, Jin, Yu, Liu, Yi, Qiu, Yuegang, Li, Xiang, Fang, Chun, Han, Jiantao, Huang, Yunhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page
container_title Advanced energy materials
container_volume 8
creator Sun, Shixiong
Luo, Jiahuan
Qian, Yong
Jin, Yu
Liu, Yi
Qiu, Yuegang
Li, Xiang
Fang, Chun
Han, Jiantao
Huang, Yunhui
description Unique nanostructures always lead to extraordinary electrochemical energy storage performance. Here, the authors report a new strategy for using Metal‐organic frameworks (MOFs) derived cobalt sulfide in a carbon matrix with a 3D honeycombed porous structure, resulting in a high‐performance supercapacitor with unrivalled capacity of ≈1887 F g‐1 at the current density of 1 A g‐1. The honeycomb‐like structure of Co9S8@C composite is loosely adsorbed, with plentiful surface area and high conductivity, leading to improved Faradaic processes across the interface and enhanced redox reactions at active Co9S8 sites. Therefore, the heterostructure‐fabricated hybrid supercapacitor, using activated carbon as the counter electrode, demonstrates a high energy density of 58 Wh kg‐1 at the power density of 1000 W kg‐1. Even under an ultrahigh power density of 17 200 W kg‐1, its energy density maintains ≈38 Wh kg‐1. The hybrid supercapacitor also exhibits suitable cycling stability, with ≈90% capacity retention after 10 000 continuous cycles at the current density of 5 A g‐1. This work presents a practical method for using MOFs as sacrificial templates to synthesize metal‐sulfides for highly efficient electrochemical energy storage. A Metal‐organic framework template strategy is devised to purposefully fabricate honeycomb Co9S8@C composites with monodispersed Co9S8 nanoparticles. The Co9S8@C composites deliver a superior specific capacity, rate performance and long‐term stability. These composites are also applicable to prepare hybrid supercapacitors, which exhibit a high energy density of 58 Wh kg‐1 and an excellent power density of 17 200 W kg‐1.
doi_str_mv 10.1002/aenm.201801080
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2099419979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099419979</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3380-d007dc0e2a3e7de6b5c53c5c998c37e1aece5ad220d1dac38bbb06f6d92b42123</originalsourceid><addsrcrecordid>eNo9kM1OwkAUhSdGEwmydd3EdfHOTP9mJ6kgJiAm6HoynblgkXbqtEjY8QgmviFPYgmGuzn3JCfnJB8htxT6FIDdKyyLPgOaAIUELkiHRjTwoySAy_PP2TXp1fUK2gsEBc47BKfYqPVh_ztzS1Xm2hs5VeDWuk_vEV3-jcYb2xJ32haZl1oxTx7SVovK1nmDtbewzhvny4_D_ucVXesKVWr05psKnVaV0nljXX1DrhZqXWPvX7vkfTR8S8f-ZPb0nA4m_pLzBHwDEBsNyBTH2GCUhTrkOtRCJJrHSBVqDJVhDAw1SvMkyzKIFpERLAsYZbxL7k69lbNfG6wbubIbV7aTkoEQARUiFm1KnFLbfI07Wbm8UG4nKcgjSnlEKc8o5WD4Mj07_gfLNmz-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099419979</pqid></control><display><type>article</type><title>Metal–Organic Framework Derived Honeycomb Co9S8@C Composites for High‐Performance Supercapacitors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sun, Shixiong ; Luo, Jiahuan ; Qian, Yong ; Jin, Yu ; Liu, Yi ; Qiu, Yuegang ; Li, Xiang ; Fang, Chun ; Han, Jiantao ; Huang, Yunhui</creator><creatorcontrib>Sun, Shixiong ; Luo, Jiahuan ; Qian, Yong ; Jin, Yu ; Liu, Yi ; Qiu, Yuegang ; Li, Xiang ; Fang, Chun ; Han, Jiantao ; Huang, Yunhui</creatorcontrib><description>Unique nanostructures always lead to extraordinary electrochemical energy storage performance. Here, the authors report a new strategy for using Metal‐organic frameworks (MOFs) derived cobalt sulfide in a carbon matrix with a 3D honeycombed porous structure, resulting in a high‐performance supercapacitor with unrivalled capacity of ≈1887 F g‐1 at the current density of 1 A g‐1. The honeycomb‐like structure of Co9S8@C composite is loosely adsorbed, with plentiful surface area and high conductivity, leading to improved Faradaic processes across the interface and enhanced redox reactions at active Co9S8 sites. Therefore, the heterostructure‐fabricated hybrid supercapacitor, using activated carbon as the counter electrode, demonstrates a high energy density of 58 Wh kg‐1 at the power density of 1000 W kg‐1. Even under an ultrahigh power density of 17 200 W kg‐1, its energy density maintains ≈38 Wh kg‐1. The hybrid supercapacitor also exhibits suitable cycling stability, with ≈90% capacity retention after 10 000 continuous cycles at the current density of 5 A g‐1. This work presents a practical method for using MOFs as sacrificial templates to synthesize metal‐sulfides for highly efficient electrochemical energy storage. A Metal‐organic framework template strategy is devised to purposefully fabricate honeycomb Co9S8@C composites with monodispersed Co9S8 nanoparticles. The Co9S8@C composites deliver a superior specific capacity, rate performance and long‐term stability. These composites are also applicable to prepare hybrid supercapacitors, which exhibit a high energy density of 58 Wh kg‐1 and an excellent power density of 17 200 W kg‐1.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201801080</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Activated carbon ; Co9S8 ; Cobalt sulfide ; Current density ; Energy storage ; Flux density ; honeycomb ; Honeycomb construction ; hybrid supercapacitors ; Metal-organic frameworks ; Redox reactions ; Supercapacitors</subject><ispartof>Advanced energy materials, 2018-09, Vol.8 (25), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9509-3785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201801080$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201801080$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Sun, Shixiong</creatorcontrib><creatorcontrib>Luo, Jiahuan</creatorcontrib><creatorcontrib>Qian, Yong</creatorcontrib><creatorcontrib>Jin, Yu</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Qiu, Yuegang</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Fang, Chun</creatorcontrib><creatorcontrib>Han, Jiantao</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><title>Metal–Organic Framework Derived Honeycomb Co9S8@C Composites for High‐Performance Supercapacitors</title><title>Advanced energy materials</title><description>Unique nanostructures always lead to extraordinary electrochemical energy storage performance. Here, the authors report a new strategy for using Metal‐organic frameworks (MOFs) derived cobalt sulfide in a carbon matrix with a 3D honeycombed porous structure, resulting in a high‐performance supercapacitor with unrivalled capacity of ≈1887 F g‐1 at the current density of 1 A g‐1. The honeycomb‐like structure of Co9S8@C composite is loosely adsorbed, with plentiful surface area and high conductivity, leading to improved Faradaic processes across the interface and enhanced redox reactions at active Co9S8 sites. Therefore, the heterostructure‐fabricated hybrid supercapacitor, using activated carbon as the counter electrode, demonstrates a high energy density of 58 Wh kg‐1 at the power density of 1000 W kg‐1. Even under an ultrahigh power density of 17 200 W kg‐1, its energy density maintains ≈38 Wh kg‐1. The hybrid supercapacitor also exhibits suitable cycling stability, with ≈90% capacity retention after 10 000 continuous cycles at the current density of 5 A g‐1. This work presents a practical method for using MOFs as sacrificial templates to synthesize metal‐sulfides for highly efficient electrochemical energy storage. A Metal‐organic framework template strategy is devised to purposefully fabricate honeycomb Co9S8@C composites with monodispersed Co9S8 nanoparticles. The Co9S8@C composites deliver a superior specific capacity, rate performance and long‐term stability. These composites are also applicable to prepare hybrid supercapacitors, which exhibit a high energy density of 58 Wh kg‐1 and an excellent power density of 17 200 W kg‐1.</description><subject>Activated carbon</subject><subject>Co9S8</subject><subject>Cobalt sulfide</subject><subject>Current density</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>honeycomb</subject><subject>Honeycomb construction</subject><subject>hybrid supercapacitors</subject><subject>Metal-organic frameworks</subject><subject>Redox reactions</subject><subject>Supercapacitors</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwkAUhSdGEwmydd3EdfHOTP9mJ6kgJiAm6HoynblgkXbqtEjY8QgmviFPYgmGuzn3JCfnJB8htxT6FIDdKyyLPgOaAIUELkiHRjTwoySAy_PP2TXp1fUK2gsEBc47BKfYqPVh_ztzS1Xm2hs5VeDWuk_vEV3-jcYb2xJ32haZl1oxTx7SVovK1nmDtbewzhvny4_D_ucVXesKVWr05psKnVaV0nljXX1DrhZqXWPvX7vkfTR8S8f-ZPb0nA4m_pLzBHwDEBsNyBTH2GCUhTrkOtRCJJrHSBVqDJVhDAw1SvMkyzKIFpERLAsYZbxL7k69lbNfG6wbubIbV7aTkoEQARUiFm1KnFLbfI07Wbm8UG4nKcgjSnlEKc8o5WD4Mj07_gfLNmz-</recordid><startdate>20180905</startdate><enddate>20180905</enddate><creator>Sun, Shixiong</creator><creator>Luo, Jiahuan</creator><creator>Qian, Yong</creator><creator>Jin, Yu</creator><creator>Liu, Yi</creator><creator>Qiu, Yuegang</creator><creator>Li, Xiang</creator><creator>Fang, Chun</creator><creator>Han, Jiantao</creator><creator>Huang, Yunhui</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9509-3785</orcidid></search><sort><creationdate>20180905</creationdate><title>Metal–Organic Framework Derived Honeycomb Co9S8@C Composites for High‐Performance Supercapacitors</title><author>Sun, Shixiong ; Luo, Jiahuan ; Qian, Yong ; Jin, Yu ; Liu, Yi ; Qiu, Yuegang ; Li, Xiang ; Fang, Chun ; Han, Jiantao ; Huang, Yunhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3380-d007dc0e2a3e7de6b5c53c5c998c37e1aece5ad220d1dac38bbb06f6d92b42123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activated carbon</topic><topic>Co9S8</topic><topic>Cobalt sulfide</topic><topic>Current density</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>honeycomb</topic><topic>Honeycomb construction</topic><topic>hybrid supercapacitors</topic><topic>Metal-organic frameworks</topic><topic>Redox reactions</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Shixiong</creatorcontrib><creatorcontrib>Luo, Jiahuan</creatorcontrib><creatorcontrib>Qian, Yong</creatorcontrib><creatorcontrib>Jin, Yu</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Qiu, Yuegang</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Fang, Chun</creatorcontrib><creatorcontrib>Han, Jiantao</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Shixiong</au><au>Luo, Jiahuan</au><au>Qian, Yong</au><au>Jin, Yu</au><au>Liu, Yi</au><au>Qiu, Yuegang</au><au>Li, Xiang</au><au>Fang, Chun</au><au>Han, Jiantao</au><au>Huang, Yunhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal–Organic Framework Derived Honeycomb Co9S8@C Composites for High‐Performance Supercapacitors</atitle><jtitle>Advanced energy materials</jtitle><date>2018-09-05</date><risdate>2018</risdate><volume>8</volume><issue>25</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Unique nanostructures always lead to extraordinary electrochemical energy storage performance. Here, the authors report a new strategy for using Metal‐organic frameworks (MOFs) derived cobalt sulfide in a carbon matrix with a 3D honeycombed porous structure, resulting in a high‐performance supercapacitor with unrivalled capacity of ≈1887 F g‐1 at the current density of 1 A g‐1. The honeycomb‐like structure of Co9S8@C composite is loosely adsorbed, with plentiful surface area and high conductivity, leading to improved Faradaic processes across the interface and enhanced redox reactions at active Co9S8 sites. Therefore, the heterostructure‐fabricated hybrid supercapacitor, using activated carbon as the counter electrode, demonstrates a high energy density of 58 Wh kg‐1 at the power density of 1000 W kg‐1. Even under an ultrahigh power density of 17 200 W kg‐1, its energy density maintains ≈38 Wh kg‐1. The hybrid supercapacitor also exhibits suitable cycling stability, with ≈90% capacity retention after 10 000 continuous cycles at the current density of 5 A g‐1. This work presents a practical method for using MOFs as sacrificial templates to synthesize metal‐sulfides for highly efficient electrochemical energy storage. A Metal‐organic framework template strategy is devised to purposefully fabricate honeycomb Co9S8@C composites with monodispersed Co9S8 nanoparticles. The Co9S8@C composites deliver a superior specific capacity, rate performance and long‐term stability. These composites are also applicable to prepare hybrid supercapacitors, which exhibit a high energy density of 58 Wh kg‐1 and an excellent power density of 17 200 W kg‐1.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201801080</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9509-3785</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2018-09, Vol.8 (25), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2099419979
source Wiley Online Library Journals Frontfile Complete
subjects Activated carbon
Co9S8
Cobalt sulfide
Current density
Energy storage
Flux density
honeycomb
Honeycomb construction
hybrid supercapacitors
Metal-organic frameworks
Redox reactions
Supercapacitors
title Metal–Organic Framework Derived Honeycomb Co9S8@C Composites for High‐Performance Supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%80%93Organic%20Framework%20Derived%20Honeycomb%20Co9S8@C%20Composites%20for%20High%E2%80%90Performance%20Supercapacitors&rft.jtitle=Advanced%20energy%20materials&rft.au=Sun,%20Shixiong&rft.date=2018-09-05&rft.volume=8&rft.issue=25&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201801080&rft_dat=%3Cproquest_wiley%3E2099419979%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099419979&rft_id=info:pmid/&rfr_iscdi=true