Metal–Organic Framework Derived Honeycomb Co9S8@C Composites for High‐Performance Supercapacitors
Unique nanostructures always lead to extraordinary electrochemical energy storage performance. Here, the authors report a new strategy for using Metal‐organic frameworks (MOFs) derived cobalt sulfide in a carbon matrix with a 3D honeycombed porous structure, resulting in a high‐performance supercapa...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2018-09, Vol.8 (25), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 25 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 8 |
creator | Sun, Shixiong Luo, Jiahuan Qian, Yong Jin, Yu Liu, Yi Qiu, Yuegang Li, Xiang Fang, Chun Han, Jiantao Huang, Yunhui |
description | Unique nanostructures always lead to extraordinary electrochemical energy storage performance. Here, the authors report a new strategy for using Metal‐organic frameworks (MOFs) derived cobalt sulfide in a carbon matrix with a 3D honeycombed porous structure, resulting in a high‐performance supercapacitor with unrivalled capacity of ≈1887 F g‐1 at the current density of 1 A g‐1. The honeycomb‐like structure of Co9S8@C composite is loosely adsorbed, with plentiful surface area and high conductivity, leading to improved Faradaic processes across the interface and enhanced redox reactions at active Co9S8 sites. Therefore, the heterostructure‐fabricated hybrid supercapacitor, using activated carbon as the counter electrode, demonstrates a high energy density of 58 Wh kg‐1 at the power density of 1000 W kg‐1. Even under an ultrahigh power density of 17 200 W kg‐1, its energy density maintains ≈38 Wh kg‐1. The hybrid supercapacitor also exhibits suitable cycling stability, with ≈90% capacity retention after 10 000 continuous cycles at the current density of 5 A g‐1. This work presents a practical method for using MOFs as sacrificial templates to synthesize metal‐sulfides for highly efficient electrochemical energy storage.
A Metal‐organic framework template strategy is devised to purposefully fabricate honeycomb Co9S8@C composites with monodispersed Co9S8 nanoparticles. The Co9S8@C composites deliver a superior specific capacity, rate performance and long‐term stability. These composites are also applicable to prepare hybrid supercapacitors, which exhibit a high energy density of 58 Wh kg‐1 and an excellent power density of 17 200 W kg‐1. |
doi_str_mv | 10.1002/aenm.201801080 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2099419979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099419979</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3380-d007dc0e2a3e7de6b5c53c5c998c37e1aece5ad220d1dac38bbb06f6d92b42123</originalsourceid><addsrcrecordid>eNo9kM1OwkAUhSdGEwmydd3EdfHOTP9mJ6kgJiAm6HoynblgkXbqtEjY8QgmviFPYgmGuzn3JCfnJB8htxT6FIDdKyyLPgOaAIUELkiHRjTwoySAy_PP2TXp1fUK2gsEBc47BKfYqPVh_ztzS1Xm2hs5VeDWuk_vEV3-jcYb2xJ32haZl1oxTx7SVovK1nmDtbewzhvny4_D_ucVXesKVWr05psKnVaV0nljXX1DrhZqXWPvX7vkfTR8S8f-ZPb0nA4m_pLzBHwDEBsNyBTH2GCUhTrkOtRCJJrHSBVqDJVhDAw1SvMkyzKIFpERLAsYZbxL7k69lbNfG6wbubIbV7aTkoEQARUiFm1KnFLbfI07Wbm8UG4nKcgjSnlEKc8o5WD4Mj07_gfLNmz-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099419979</pqid></control><display><type>article</type><title>Metal–Organic Framework Derived Honeycomb Co9S8@C Composites for High‐Performance Supercapacitors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sun, Shixiong ; Luo, Jiahuan ; Qian, Yong ; Jin, Yu ; Liu, Yi ; Qiu, Yuegang ; Li, Xiang ; Fang, Chun ; Han, Jiantao ; Huang, Yunhui</creator><creatorcontrib>Sun, Shixiong ; Luo, Jiahuan ; Qian, Yong ; Jin, Yu ; Liu, Yi ; Qiu, Yuegang ; Li, Xiang ; Fang, Chun ; Han, Jiantao ; Huang, Yunhui</creatorcontrib><description>Unique nanostructures always lead to extraordinary electrochemical energy storage performance. Here, the authors report a new strategy for using Metal‐organic frameworks (MOFs) derived cobalt sulfide in a carbon matrix with a 3D honeycombed porous structure, resulting in a high‐performance supercapacitor with unrivalled capacity of ≈1887 F g‐1 at the current density of 1 A g‐1. The honeycomb‐like structure of Co9S8@C composite is loosely adsorbed, with plentiful surface area and high conductivity, leading to improved Faradaic processes across the interface and enhanced redox reactions at active Co9S8 sites. Therefore, the heterostructure‐fabricated hybrid supercapacitor, using activated carbon as the counter electrode, demonstrates a high energy density of 58 Wh kg‐1 at the power density of 1000 W kg‐1. Even under an ultrahigh power density of 17 200 W kg‐1, its energy density maintains ≈38 Wh kg‐1. The hybrid supercapacitor also exhibits suitable cycling stability, with ≈90% capacity retention after 10 000 continuous cycles at the current density of 5 A g‐1. This work presents a practical method for using MOFs as sacrificial templates to synthesize metal‐sulfides for highly efficient electrochemical energy storage.
A Metal‐organic framework template strategy is devised to purposefully fabricate honeycomb Co9S8@C composites with monodispersed Co9S8 nanoparticles. The Co9S8@C composites deliver a superior specific capacity, rate performance and long‐term stability. These composites are also applicable to prepare hybrid supercapacitors, which exhibit a high energy density of 58 Wh kg‐1 and an excellent power density of 17 200 W kg‐1.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201801080</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Activated carbon ; Co9S8 ; Cobalt sulfide ; Current density ; Energy storage ; Flux density ; honeycomb ; Honeycomb construction ; hybrid supercapacitors ; Metal-organic frameworks ; Redox reactions ; Supercapacitors</subject><ispartof>Advanced energy materials, 2018-09, Vol.8 (25), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9509-3785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201801080$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201801080$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Sun, Shixiong</creatorcontrib><creatorcontrib>Luo, Jiahuan</creatorcontrib><creatorcontrib>Qian, Yong</creatorcontrib><creatorcontrib>Jin, Yu</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Qiu, Yuegang</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Fang, Chun</creatorcontrib><creatorcontrib>Han, Jiantao</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><title>Metal–Organic Framework Derived Honeycomb Co9S8@C Composites for High‐Performance Supercapacitors</title><title>Advanced energy materials</title><description>Unique nanostructures always lead to extraordinary electrochemical energy storage performance. Here, the authors report a new strategy for using Metal‐organic frameworks (MOFs) derived cobalt sulfide in a carbon matrix with a 3D honeycombed porous structure, resulting in a high‐performance supercapacitor with unrivalled capacity of ≈1887 F g‐1 at the current density of 1 A g‐1. The honeycomb‐like structure of Co9S8@C composite is loosely adsorbed, with plentiful surface area and high conductivity, leading to improved Faradaic processes across the interface and enhanced redox reactions at active Co9S8 sites. Therefore, the heterostructure‐fabricated hybrid supercapacitor, using activated carbon as the counter electrode, demonstrates a high energy density of 58 Wh kg‐1 at the power density of 1000 W kg‐1. Even under an ultrahigh power density of 17 200 W kg‐1, its energy density maintains ≈38 Wh kg‐1. The hybrid supercapacitor also exhibits suitable cycling stability, with ≈90% capacity retention after 10 000 continuous cycles at the current density of 5 A g‐1. This work presents a practical method for using MOFs as sacrificial templates to synthesize metal‐sulfides for highly efficient electrochemical energy storage.
A Metal‐organic framework template strategy is devised to purposefully fabricate honeycomb Co9S8@C composites with monodispersed Co9S8 nanoparticles. The Co9S8@C composites deliver a superior specific capacity, rate performance and long‐term stability. These composites are also applicable to prepare hybrid supercapacitors, which exhibit a high energy density of 58 Wh kg‐1 and an excellent power density of 17 200 W kg‐1.</description><subject>Activated carbon</subject><subject>Co9S8</subject><subject>Cobalt sulfide</subject><subject>Current density</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>honeycomb</subject><subject>Honeycomb construction</subject><subject>hybrid supercapacitors</subject><subject>Metal-organic frameworks</subject><subject>Redox reactions</subject><subject>Supercapacitors</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwkAUhSdGEwmydd3EdfHOTP9mJ6kgJiAm6HoynblgkXbqtEjY8QgmviFPYgmGuzn3JCfnJB8htxT6FIDdKyyLPgOaAIUELkiHRjTwoySAy_PP2TXp1fUK2gsEBc47BKfYqPVh_ztzS1Xm2hs5VeDWuk_vEV3-jcYb2xJ32haZl1oxTx7SVovK1nmDtbewzhvny4_D_ucVXesKVWr05psKnVaV0nljXX1DrhZqXWPvX7vkfTR8S8f-ZPb0nA4m_pLzBHwDEBsNyBTH2GCUhTrkOtRCJJrHSBVqDJVhDAw1SvMkyzKIFpERLAsYZbxL7k69lbNfG6wbubIbV7aTkoEQARUiFm1KnFLbfI07Wbm8UG4nKcgjSnlEKc8o5WD4Mj07_gfLNmz-</recordid><startdate>20180905</startdate><enddate>20180905</enddate><creator>Sun, Shixiong</creator><creator>Luo, Jiahuan</creator><creator>Qian, Yong</creator><creator>Jin, Yu</creator><creator>Liu, Yi</creator><creator>Qiu, Yuegang</creator><creator>Li, Xiang</creator><creator>Fang, Chun</creator><creator>Han, Jiantao</creator><creator>Huang, Yunhui</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9509-3785</orcidid></search><sort><creationdate>20180905</creationdate><title>Metal–Organic Framework Derived Honeycomb Co9S8@C Composites for High‐Performance Supercapacitors</title><author>Sun, Shixiong ; Luo, Jiahuan ; Qian, Yong ; Jin, Yu ; Liu, Yi ; Qiu, Yuegang ; Li, Xiang ; Fang, Chun ; Han, Jiantao ; Huang, Yunhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3380-d007dc0e2a3e7de6b5c53c5c998c37e1aece5ad220d1dac38bbb06f6d92b42123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activated carbon</topic><topic>Co9S8</topic><topic>Cobalt sulfide</topic><topic>Current density</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>honeycomb</topic><topic>Honeycomb construction</topic><topic>hybrid supercapacitors</topic><topic>Metal-organic frameworks</topic><topic>Redox reactions</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Shixiong</creatorcontrib><creatorcontrib>Luo, Jiahuan</creatorcontrib><creatorcontrib>Qian, Yong</creatorcontrib><creatorcontrib>Jin, Yu</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Qiu, Yuegang</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Fang, Chun</creatorcontrib><creatorcontrib>Han, Jiantao</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Shixiong</au><au>Luo, Jiahuan</au><au>Qian, Yong</au><au>Jin, Yu</au><au>Liu, Yi</au><au>Qiu, Yuegang</au><au>Li, Xiang</au><au>Fang, Chun</au><au>Han, Jiantao</au><au>Huang, Yunhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal–Organic Framework Derived Honeycomb Co9S8@C Composites for High‐Performance Supercapacitors</atitle><jtitle>Advanced energy materials</jtitle><date>2018-09-05</date><risdate>2018</risdate><volume>8</volume><issue>25</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Unique nanostructures always lead to extraordinary electrochemical energy storage performance. Here, the authors report a new strategy for using Metal‐organic frameworks (MOFs) derived cobalt sulfide in a carbon matrix with a 3D honeycombed porous structure, resulting in a high‐performance supercapacitor with unrivalled capacity of ≈1887 F g‐1 at the current density of 1 A g‐1. The honeycomb‐like structure of Co9S8@C composite is loosely adsorbed, with plentiful surface area and high conductivity, leading to improved Faradaic processes across the interface and enhanced redox reactions at active Co9S8 sites. Therefore, the heterostructure‐fabricated hybrid supercapacitor, using activated carbon as the counter electrode, demonstrates a high energy density of 58 Wh kg‐1 at the power density of 1000 W kg‐1. Even under an ultrahigh power density of 17 200 W kg‐1, its energy density maintains ≈38 Wh kg‐1. The hybrid supercapacitor also exhibits suitable cycling stability, with ≈90% capacity retention after 10 000 continuous cycles at the current density of 5 A g‐1. This work presents a practical method for using MOFs as sacrificial templates to synthesize metal‐sulfides for highly efficient electrochemical energy storage.
A Metal‐organic framework template strategy is devised to purposefully fabricate honeycomb Co9S8@C composites with monodispersed Co9S8 nanoparticles. The Co9S8@C composites deliver a superior specific capacity, rate performance and long‐term stability. These composites are also applicable to prepare hybrid supercapacitors, which exhibit a high energy density of 58 Wh kg‐1 and an excellent power density of 17 200 W kg‐1.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201801080</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9509-3785</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2018-09, Vol.8 (25), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2099419979 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Activated carbon Co9S8 Cobalt sulfide Current density Energy storage Flux density honeycomb Honeycomb construction hybrid supercapacitors Metal-organic frameworks Redox reactions Supercapacitors |
title | Metal–Organic Framework Derived Honeycomb Co9S8@C Composites for High‐Performance Supercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%80%93Organic%20Framework%20Derived%20Honeycomb%20Co9S8@C%20Composites%20for%20High%E2%80%90Performance%20Supercapacitors&rft.jtitle=Advanced%20energy%20materials&rft.au=Sun,%20Shixiong&rft.date=2018-09-05&rft.volume=8&rft.issue=25&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201801080&rft_dat=%3Cproquest_wiley%3E2099419979%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099419979&rft_id=info:pmid/&rfr_iscdi=true |