Generalised additive mixed models analysis via gammSlice

Summary We demonstrate the use of our R package, gammSlice, for Bayesian fitting and inference in generalised additive mixed model analysis. This class of models includes generalised linear mixed models and generalised additive models as special cases. Accurate Bayesian inference is achievable via s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Australian & New Zealand journal of statistics 2018-09, Vol.60 (3), p.279-300
Hauptverfasser: Pham, Tung H., Wand, Matt P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 3
container_start_page 279
container_title Australian & New Zealand journal of statistics
container_volume 60
creator Pham, Tung H.
Wand, Matt P.
description Summary We demonstrate the use of our R package, gammSlice, for Bayesian fitting and inference in generalised additive mixed model analysis. This class of models includes generalised linear mixed models and generalised additive models as special cases. Accurate Bayesian inference is achievable via sufficiently large Markov chain Monte Carlo (MCMC) samples. Slice sampling is a key component of the MCMC scheme. Comparisons with existing generalised additive mixed model software shows that gammSlice offers improved inferential accuracy, albeit at the cost of longer computational time. Accurate generalised additive mixed model analyses is challenging. Solutions are provided via a package in the R language. Several illustrations are provided.
doi_str_mv 10.1111/anzs.12241
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2099265794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099265794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2601-a51d378a42ee544d04fdece3d9d4fb2fc8191f2668aeb10496f8eb86392873623</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsXn2DBm7A1k6TZ5FiKVqHooQriJaSbiaTsdmvSVtend-t6di4zP3wzDB8hl0BH0NWNXX-nETAm4IgMQMgiV4K9HnczlzoHUfBTcpbSilIQlMsBUTNcY7RVSOgy61zYhj1mdfjqYt04rFJm17ZqU0jZPtjs3db1ogolnpMTb6uEF399SF7ubp-n9_n8afYwnczzkkkKuR2D44WygiGOhXBUeIclcqed8EvmSwUaPJNSWVwCFVp6hUsluWaq4JLxIbnq725i87HDtDWrZhe7l5JhVGsmx4UWHXXdU2VsUorozSaG2sbWADUHM-Zgxvya6WDo4c9QYfsPaSaPb4t-5wfiG2Vu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099265794</pqid></control><display><type>article</type><title>Generalised additive mixed models analysis via gammSlice</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pham, Tung H. ; Wand, Matt P.</creator><creatorcontrib>Pham, Tung H. ; Wand, Matt P.</creatorcontrib><description>Summary We demonstrate the use of our R package, gammSlice, for Bayesian fitting and inference in generalised additive mixed model analysis. This class of models includes generalised linear mixed models and generalised additive models as special cases. Accurate Bayesian inference is achievable via sufficiently large Markov chain Monte Carlo (MCMC) samples. Slice sampling is a key component of the MCMC scheme. Comparisons with existing generalised additive mixed model software shows that gammSlice offers improved inferential accuracy, albeit at the cost of longer computational time. Accurate generalised additive mixed model analyses is challenging. Solutions are provided via a package in the R language. Several illustrations are provided.</description><identifier>ISSN: 1369-1473</identifier><identifier>EISSN: 1467-842X</identifier><identifier>DOI: 10.1111/anzs.12241</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bayesian analysis ; Computer simulation ; Computing time ; generalised additive models ; generalised linear mixed models ; Markov analysis ; Markov chain Monte Carlo ; Markov chains ; Monte Carlo simulation ; penalised splines ; slice sampling ; Statistical inference</subject><ispartof>Australian &amp; New Zealand journal of statistics, 2018-09, Vol.60 (3), p.279-300</ispartof><rights>2018 Australian Statistical Publishing Association Inc. Published by John Wiley &amp; Sons Australia Pty Ltd.</rights><rights>Copyright © 2018 Australian Statistical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2601-a51d378a42ee544d04fdece3d9d4fb2fc8191f2668aeb10496f8eb86392873623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fanzs.12241$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fanzs.12241$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Pham, Tung H.</creatorcontrib><creatorcontrib>Wand, Matt P.</creatorcontrib><title>Generalised additive mixed models analysis via gammSlice</title><title>Australian &amp; New Zealand journal of statistics</title><description>Summary We demonstrate the use of our R package, gammSlice, for Bayesian fitting and inference in generalised additive mixed model analysis. This class of models includes generalised linear mixed models and generalised additive models as special cases. Accurate Bayesian inference is achievable via sufficiently large Markov chain Monte Carlo (MCMC) samples. Slice sampling is a key component of the MCMC scheme. Comparisons with existing generalised additive mixed model software shows that gammSlice offers improved inferential accuracy, albeit at the cost of longer computational time. Accurate generalised additive mixed model analyses is challenging. Solutions are provided via a package in the R language. Several illustrations are provided.</description><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>generalised additive models</subject><subject>generalised linear mixed models</subject><subject>Markov analysis</subject><subject>Markov chain Monte Carlo</subject><subject>Markov chains</subject><subject>Monte Carlo simulation</subject><subject>penalised splines</subject><subject>slice sampling</subject><subject>Statistical inference</subject><issn>1369-1473</issn><issn>1467-842X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsXn2DBm7A1k6TZ5FiKVqHooQriJaSbiaTsdmvSVtend-t6di4zP3wzDB8hl0BH0NWNXX-nETAm4IgMQMgiV4K9HnczlzoHUfBTcpbSilIQlMsBUTNcY7RVSOgy61zYhj1mdfjqYt04rFJm17ZqU0jZPtjs3db1ogolnpMTb6uEF399SF7ubp-n9_n8afYwnczzkkkKuR2D44WygiGOhXBUeIclcqed8EvmSwUaPJNSWVwCFVp6hUsluWaq4JLxIbnq725i87HDtDWrZhe7l5JhVGsmx4UWHXXdU2VsUorozSaG2sbWADUHM-Zgxvya6WDo4c9QYfsPaSaPb4t-5wfiG2Vu</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Pham, Tung H.</creator><creator>Wand, Matt P.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201809</creationdate><title>Generalised additive mixed models analysis via gammSlice</title><author>Pham, Tung H. ; Wand, Matt P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2601-a51d378a42ee544d04fdece3d9d4fb2fc8191f2668aeb10496f8eb86392873623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>generalised additive models</topic><topic>generalised linear mixed models</topic><topic>Markov analysis</topic><topic>Markov chain Monte Carlo</topic><topic>Markov chains</topic><topic>Monte Carlo simulation</topic><topic>penalised splines</topic><topic>slice sampling</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Tung H.</creatorcontrib><creatorcontrib>Wand, Matt P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Australian &amp; New Zealand journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Tung H.</au><au>Wand, Matt P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalised additive mixed models analysis via gammSlice</atitle><jtitle>Australian &amp; New Zealand journal of statistics</jtitle><date>2018-09</date><risdate>2018</risdate><volume>60</volume><issue>3</issue><spage>279</spage><epage>300</epage><pages>279-300</pages><issn>1369-1473</issn><eissn>1467-842X</eissn><abstract>Summary We demonstrate the use of our R package, gammSlice, for Bayesian fitting and inference in generalised additive mixed model analysis. This class of models includes generalised linear mixed models and generalised additive models as special cases. Accurate Bayesian inference is achievable via sufficiently large Markov chain Monte Carlo (MCMC) samples. Slice sampling is a key component of the MCMC scheme. Comparisons with existing generalised additive mixed model software shows that gammSlice offers improved inferential accuracy, albeit at the cost of longer computational time. Accurate generalised additive mixed model analyses is challenging. Solutions are provided via a package in the R language. Several illustrations are provided.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/anzs.12241</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1369-1473
ispartof Australian & New Zealand journal of statistics, 2018-09, Vol.60 (3), p.279-300
issn 1369-1473
1467-842X
language eng
recordid cdi_proquest_journals_2099265794
source Wiley Online Library Journals Frontfile Complete
subjects Bayesian analysis
Computer simulation
Computing time
generalised additive models
generalised linear mixed models
Markov analysis
Markov chain Monte Carlo
Markov chains
Monte Carlo simulation
penalised splines
slice sampling
Statistical inference
title Generalised additive mixed models analysis via gammSlice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A41%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalised%20additive%20mixed%20models%20analysis%20via%20gammSlice&rft.jtitle=Australian%20&%20New%20Zealand%20journal%20of%20statistics&rft.au=Pham,%20Tung%20H.&rft.date=2018-09&rft.volume=60&rft.issue=3&rft.spage=279&rft.epage=300&rft.pages=279-300&rft.issn=1369-1473&rft.eissn=1467-842X&rft_id=info:doi/10.1111/anzs.12241&rft_dat=%3Cproquest_cross%3E2099265794%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099265794&rft_id=info:pmid/&rfr_iscdi=true