QoS-aware Service Composition Using Fuzzy Set Theory and Genetic Algorithm
The quality of service (QoS)-aware service composition problem is a lively topic of debate because of the fuzziness in the quality data and the user-oriented specific QoS requirements. The aim of this paper is to develop a model to select the most suitable service composition in a way that maximizes...
Gespeichert in:
Veröffentlicht in: | Wireless personal communications 2018-09, Vol.102 (2), p.1009-1028 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1028 |
---|---|
container_issue | 2 |
container_start_page | 1009 |
container_title | Wireless personal communications |
container_volume | 102 |
creator | Xu, Jiajun Guo, Lin Zhang, Ruxia Hu, Hualang Wang, Fei Pei, Zhiyuan |
description | The quality of service (QoS)-aware service composition problem is a lively topic of debate because of the fuzziness in the quality data and the user-oriented specific QoS requirements. The aim of this paper is to develop a model to select the most suitable service composition in a way that maximizes solutions expressed as functions over fuzzy/crisp QoS attributes, while satisfying user’s QoS requirements. In this paper, based on fuzzy set theory (FST) and genetic algorithm (GA), a triangular fuzzy genetic algorithm (TGA) is proposed for solving the service composition problem. The following set of strategies are presented: a quality model including crisp and fuzzy properties represented by triangular fuzzy numbers, a feasible method of normalizing the QoS matrix, aggregating formulas of each control structure for eight properties, a practicable method of defuzzification, a global best strategy with a fitness function which calculates the QoS priority vector and is considered as an objective evaluation criterion for selecting an optimal solution that meets user’s preferences best. Empirical comparisons with two algorithms on different scales of composite service indicate that TGA is highly competitive in regards to search capability, especially when the problem size is large. The results may be helpful to designers in selecting the best services for building a service-oriented system. |
doi_str_mv | 10.1007/s11277-017-5129-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2099071844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099071844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9247ec76dcaa226611bf2624b4265f40fd609bfc028ba425cab3d31a803766c43</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczQzm012j6VYPyiItAVvIZvNtlvaTU22Svvr3bKCJ08DM-_zDjyE3AK_B87VQwRApRgHxVLAnGVnZACpQpYl4uOcDHjeLSUCXpKrGNecd1SOA_L67mfMfJvg6MyFr9o6OvbbnY91W_uGLmLdLOlkfzweuntL5yvnw4GapqRPrnFtbelos_Shblfba3JRmU10N79zSBaTx_n4mU3fnl7GoymzCciW5SiUs0qW1hhEKQGKCiWKQqBMK8GrUvK8qCzHrDACU2uKpEzAZDxRUlqRDMld37sL_nPvYqvXfh-a7qVGnudcQSZOKehTNvgYg6v0LtRbEw4auD4p070y3SnTJ2U66xjsmdhlm6ULf83_Qz81ZG2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099071844</pqid></control><display><type>article</type><title>QoS-aware Service Composition Using Fuzzy Set Theory and Genetic Algorithm</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xu, Jiajun ; Guo, Lin ; Zhang, Ruxia ; Hu, Hualang ; Wang, Fei ; Pei, Zhiyuan</creator><creatorcontrib>Xu, Jiajun ; Guo, Lin ; Zhang, Ruxia ; Hu, Hualang ; Wang, Fei ; Pei, Zhiyuan</creatorcontrib><description>The quality of service (QoS)-aware service composition problem is a lively topic of debate because of the fuzziness in the quality data and the user-oriented specific QoS requirements. The aim of this paper is to develop a model to select the most suitable service composition in a way that maximizes solutions expressed as functions over fuzzy/crisp QoS attributes, while satisfying user’s QoS requirements. In this paper, based on fuzzy set theory (FST) and genetic algorithm (GA), a triangular fuzzy genetic algorithm (TGA) is proposed for solving the service composition problem. The following set of strategies are presented: a quality model including crisp and fuzzy properties represented by triangular fuzzy numbers, a feasible method of normalizing the QoS matrix, aggregating formulas of each control structure for eight properties, a practicable method of defuzzification, a global best strategy with a fitness function which calculates the QoS priority vector and is considered as an objective evaluation criterion for selecting an optimal solution that meets user’s preferences best. Empirical comparisons with two algorithms on different scales of composite service indicate that TGA is highly competitive in regards to search capability, especially when the problem size is large. The results may be helpful to designers in selecting the best services for building a service-oriented system.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-017-5129-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Communications Engineering ; Composition ; Computer Communication Networks ; Engineering ; Fitness ; Fuzzy set theory ; Fuzzy sets ; Genetic algorithms ; Networks ; Normalizing ; Set theory ; Signal,Image and Speech Processing</subject><ispartof>Wireless personal communications, 2018-09, Vol.102 (2), p.1009-1028</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9247ec76dcaa226611bf2624b4265f40fd609bfc028ba425cab3d31a803766c43</citedby><cites>FETCH-LOGICAL-c316t-9247ec76dcaa226611bf2624b4265f40fd609bfc028ba425cab3d31a803766c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-017-5129-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-017-5129-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xu, Jiajun</creatorcontrib><creatorcontrib>Guo, Lin</creatorcontrib><creatorcontrib>Zhang, Ruxia</creatorcontrib><creatorcontrib>Hu, Hualang</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Pei, Zhiyuan</creatorcontrib><title>QoS-aware Service Composition Using Fuzzy Set Theory and Genetic Algorithm</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>The quality of service (QoS)-aware service composition problem is a lively topic of debate because of the fuzziness in the quality data and the user-oriented specific QoS requirements. The aim of this paper is to develop a model to select the most suitable service composition in a way that maximizes solutions expressed as functions over fuzzy/crisp QoS attributes, while satisfying user’s QoS requirements. In this paper, based on fuzzy set theory (FST) and genetic algorithm (GA), a triangular fuzzy genetic algorithm (TGA) is proposed for solving the service composition problem. The following set of strategies are presented: a quality model including crisp and fuzzy properties represented by triangular fuzzy numbers, a feasible method of normalizing the QoS matrix, aggregating formulas of each control structure for eight properties, a practicable method of defuzzification, a global best strategy with a fitness function which calculates the QoS priority vector and is considered as an objective evaluation criterion for selecting an optimal solution that meets user’s preferences best. Empirical comparisons with two algorithms on different scales of composite service indicate that TGA is highly competitive in regards to search capability, especially when the problem size is large. The results may be helpful to designers in selecting the best services for building a service-oriented system.</description><subject>Communications Engineering</subject><subject>Composition</subject><subject>Computer Communication Networks</subject><subject>Engineering</subject><subject>Fitness</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Genetic algorithms</subject><subject>Networks</subject><subject>Normalizing</subject><subject>Set theory</subject><subject>Signal,Image and Speech Processing</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczQzm012j6VYPyiItAVvIZvNtlvaTU22Svvr3bKCJ08DM-_zDjyE3AK_B87VQwRApRgHxVLAnGVnZACpQpYl4uOcDHjeLSUCXpKrGNecd1SOA_L67mfMfJvg6MyFr9o6OvbbnY91W_uGLmLdLOlkfzweuntL5yvnw4GapqRPrnFtbelos_Shblfba3JRmU10N79zSBaTx_n4mU3fnl7GoymzCciW5SiUs0qW1hhEKQGKCiWKQqBMK8GrUvK8qCzHrDACU2uKpEzAZDxRUlqRDMld37sL_nPvYqvXfh-a7qVGnudcQSZOKehTNvgYg6v0LtRbEw4auD4p070y3SnTJ2U66xjsmdhlm6ULf83_Qz81ZG2A</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Xu, Jiajun</creator><creator>Guo, Lin</creator><creator>Zhang, Ruxia</creator><creator>Hu, Hualang</creator><creator>Wang, Fei</creator><creator>Pei, Zhiyuan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180901</creationdate><title>QoS-aware Service Composition Using Fuzzy Set Theory and Genetic Algorithm</title><author>Xu, Jiajun ; Guo, Lin ; Zhang, Ruxia ; Hu, Hualang ; Wang, Fei ; Pei, Zhiyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9247ec76dcaa226611bf2624b4265f40fd609bfc028ba425cab3d31a803766c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Communications Engineering</topic><topic>Composition</topic><topic>Computer Communication Networks</topic><topic>Engineering</topic><topic>Fitness</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Genetic algorithms</topic><topic>Networks</topic><topic>Normalizing</topic><topic>Set theory</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jiajun</creatorcontrib><creatorcontrib>Guo, Lin</creatorcontrib><creatorcontrib>Zhang, Ruxia</creatorcontrib><creatorcontrib>Hu, Hualang</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Pei, Zhiyuan</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jiajun</au><au>Guo, Lin</au><au>Zhang, Ruxia</au><au>Hu, Hualang</au><au>Wang, Fei</au><au>Pei, Zhiyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QoS-aware Service Composition Using Fuzzy Set Theory and Genetic Algorithm</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>102</volume><issue>2</issue><spage>1009</spage><epage>1028</epage><pages>1009-1028</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>The quality of service (QoS)-aware service composition problem is a lively topic of debate because of the fuzziness in the quality data and the user-oriented specific QoS requirements. The aim of this paper is to develop a model to select the most suitable service composition in a way that maximizes solutions expressed as functions over fuzzy/crisp QoS attributes, while satisfying user’s QoS requirements. In this paper, based on fuzzy set theory (FST) and genetic algorithm (GA), a triangular fuzzy genetic algorithm (TGA) is proposed for solving the service composition problem. The following set of strategies are presented: a quality model including crisp and fuzzy properties represented by triangular fuzzy numbers, a feasible method of normalizing the QoS matrix, aggregating formulas of each control structure for eight properties, a practicable method of defuzzification, a global best strategy with a fitness function which calculates the QoS priority vector and is considered as an objective evaluation criterion for selecting an optimal solution that meets user’s preferences best. Empirical comparisons with two algorithms on different scales of composite service indicate that TGA is highly competitive in regards to search capability, especially when the problem size is large. The results may be helpful to designers in selecting the best services for building a service-oriented system.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-017-5129-8</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-6212 |
ispartof | Wireless personal communications, 2018-09, Vol.102 (2), p.1009-1028 |
issn | 0929-6212 1572-834X |
language | eng |
recordid | cdi_proquest_journals_2099071844 |
source | SpringerLink Journals - AutoHoldings |
subjects | Communications Engineering Composition Computer Communication Networks Engineering Fitness Fuzzy set theory Fuzzy sets Genetic algorithms Networks Normalizing Set theory Signal,Image and Speech Processing |
title | QoS-aware Service Composition Using Fuzzy Set Theory and Genetic Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QoS-aware%20Service%20Composition%20Using%20Fuzzy%20Set%20Theory%20and%20Genetic%20Algorithm&rft.jtitle=Wireless%20personal%20communications&rft.au=Xu,%20Jiajun&rft.date=2018-09-01&rft.volume=102&rft.issue=2&rft.spage=1009&rft.epage=1028&rft.pages=1009-1028&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-017-5129-8&rft_dat=%3Cproquest_cross%3E2099071844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099071844&rft_id=info:pmid/&rfr_iscdi=true |