QoS-aware Service Composition Using Fuzzy Set Theory and Genetic Algorithm

The quality of service (QoS)-aware service composition problem is a lively topic of debate because of the fuzziness in the quality data and the user-oriented specific QoS requirements. The aim of this paper is to develop a model to select the most suitable service composition in a way that maximizes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless personal communications 2018-09, Vol.102 (2), p.1009-1028
Hauptverfasser: Xu, Jiajun, Guo, Lin, Zhang, Ruxia, Hu, Hualang, Wang, Fei, Pei, Zhiyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1028
container_issue 2
container_start_page 1009
container_title Wireless personal communications
container_volume 102
creator Xu, Jiajun
Guo, Lin
Zhang, Ruxia
Hu, Hualang
Wang, Fei
Pei, Zhiyuan
description The quality of service (QoS)-aware service composition problem is a lively topic of debate because of the fuzziness in the quality data and the user-oriented specific QoS requirements. The aim of this paper is to develop a model to select the most suitable service composition in a way that maximizes solutions expressed as functions over fuzzy/crisp QoS attributes, while satisfying user’s QoS requirements. In this paper, based on fuzzy set theory (FST) and genetic algorithm (GA), a triangular fuzzy genetic algorithm (TGA) is proposed for solving the service composition problem. The following set of strategies are presented: a quality model including crisp and fuzzy properties represented by triangular fuzzy numbers, a feasible method of normalizing the QoS matrix, aggregating formulas of each control structure for eight properties, a practicable method of defuzzification, a global best strategy with a fitness function which calculates the QoS priority vector and is considered as an objective evaluation criterion for selecting an optimal solution that meets user’s preferences best. Empirical comparisons with two algorithms on different scales of composite service indicate that TGA is highly competitive in regards to search capability, especially when the problem size is large. The results may be helpful to designers in selecting the best services for building a service-oriented system.
doi_str_mv 10.1007/s11277-017-5129-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2099071844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099071844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9247ec76dcaa226611bf2624b4265f40fd609bfc028ba425cab3d31a803766c43</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczQzm012j6VYPyiItAVvIZvNtlvaTU22Svvr3bKCJ08DM-_zDjyE3AK_B87VQwRApRgHxVLAnGVnZACpQpYl4uOcDHjeLSUCXpKrGNecd1SOA_L67mfMfJvg6MyFr9o6OvbbnY91W_uGLmLdLOlkfzweuntL5yvnw4GapqRPrnFtbelos_Shblfba3JRmU10N79zSBaTx_n4mU3fnl7GoymzCciW5SiUs0qW1hhEKQGKCiWKQqBMK8GrUvK8qCzHrDACU2uKpEzAZDxRUlqRDMld37sL_nPvYqvXfh-a7qVGnudcQSZOKehTNvgYg6v0LtRbEw4auD4p070y3SnTJ2U66xjsmdhlm6ULf83_Qz81ZG2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099071844</pqid></control><display><type>article</type><title>QoS-aware Service Composition Using Fuzzy Set Theory and Genetic Algorithm</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xu, Jiajun ; Guo, Lin ; Zhang, Ruxia ; Hu, Hualang ; Wang, Fei ; Pei, Zhiyuan</creator><creatorcontrib>Xu, Jiajun ; Guo, Lin ; Zhang, Ruxia ; Hu, Hualang ; Wang, Fei ; Pei, Zhiyuan</creatorcontrib><description>The quality of service (QoS)-aware service composition problem is a lively topic of debate because of the fuzziness in the quality data and the user-oriented specific QoS requirements. The aim of this paper is to develop a model to select the most suitable service composition in a way that maximizes solutions expressed as functions over fuzzy/crisp QoS attributes, while satisfying user’s QoS requirements. In this paper, based on fuzzy set theory (FST) and genetic algorithm (GA), a triangular fuzzy genetic algorithm (TGA) is proposed for solving the service composition problem. The following set of strategies are presented: a quality model including crisp and fuzzy properties represented by triangular fuzzy numbers, a feasible method of normalizing the QoS matrix, aggregating formulas of each control structure for eight properties, a practicable method of defuzzification, a global best strategy with a fitness function which calculates the QoS priority vector and is considered as an objective evaluation criterion for selecting an optimal solution that meets user’s preferences best. Empirical comparisons with two algorithms on different scales of composite service indicate that TGA is highly competitive in regards to search capability, especially when the problem size is large. The results may be helpful to designers in selecting the best services for building a service-oriented system.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-017-5129-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Communications Engineering ; Composition ; Computer Communication Networks ; Engineering ; Fitness ; Fuzzy set theory ; Fuzzy sets ; Genetic algorithms ; Networks ; Normalizing ; Set theory ; Signal,Image and Speech Processing</subject><ispartof>Wireless personal communications, 2018-09, Vol.102 (2), p.1009-1028</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9247ec76dcaa226611bf2624b4265f40fd609bfc028ba425cab3d31a803766c43</citedby><cites>FETCH-LOGICAL-c316t-9247ec76dcaa226611bf2624b4265f40fd609bfc028ba425cab3d31a803766c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-017-5129-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-017-5129-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xu, Jiajun</creatorcontrib><creatorcontrib>Guo, Lin</creatorcontrib><creatorcontrib>Zhang, Ruxia</creatorcontrib><creatorcontrib>Hu, Hualang</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Pei, Zhiyuan</creatorcontrib><title>QoS-aware Service Composition Using Fuzzy Set Theory and Genetic Algorithm</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>The quality of service (QoS)-aware service composition problem is a lively topic of debate because of the fuzziness in the quality data and the user-oriented specific QoS requirements. The aim of this paper is to develop a model to select the most suitable service composition in a way that maximizes solutions expressed as functions over fuzzy/crisp QoS attributes, while satisfying user’s QoS requirements. In this paper, based on fuzzy set theory (FST) and genetic algorithm (GA), a triangular fuzzy genetic algorithm (TGA) is proposed for solving the service composition problem. The following set of strategies are presented: a quality model including crisp and fuzzy properties represented by triangular fuzzy numbers, a feasible method of normalizing the QoS matrix, aggregating formulas of each control structure for eight properties, a practicable method of defuzzification, a global best strategy with a fitness function which calculates the QoS priority vector and is considered as an objective evaluation criterion for selecting an optimal solution that meets user’s preferences best. Empirical comparisons with two algorithms on different scales of composite service indicate that TGA is highly competitive in regards to search capability, especially when the problem size is large. The results may be helpful to designers in selecting the best services for building a service-oriented system.</description><subject>Communications Engineering</subject><subject>Composition</subject><subject>Computer Communication Networks</subject><subject>Engineering</subject><subject>Fitness</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Genetic algorithms</subject><subject>Networks</subject><subject>Normalizing</subject><subject>Set theory</subject><subject>Signal,Image and Speech Processing</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczQzm012j6VYPyiItAVvIZvNtlvaTU22Svvr3bKCJ08DM-_zDjyE3AK_B87VQwRApRgHxVLAnGVnZACpQpYl4uOcDHjeLSUCXpKrGNecd1SOA_L67mfMfJvg6MyFr9o6OvbbnY91W_uGLmLdLOlkfzweuntL5yvnw4GapqRPrnFtbelos_Shblfba3JRmU10N79zSBaTx_n4mU3fnl7GoymzCciW5SiUs0qW1hhEKQGKCiWKQqBMK8GrUvK8qCzHrDACU2uKpEzAZDxRUlqRDMld37sL_nPvYqvXfh-a7qVGnudcQSZOKehTNvgYg6v0LtRbEw4auD4p070y3SnTJ2U66xjsmdhlm6ULf83_Qz81ZG2A</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Xu, Jiajun</creator><creator>Guo, Lin</creator><creator>Zhang, Ruxia</creator><creator>Hu, Hualang</creator><creator>Wang, Fei</creator><creator>Pei, Zhiyuan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180901</creationdate><title>QoS-aware Service Composition Using Fuzzy Set Theory and Genetic Algorithm</title><author>Xu, Jiajun ; Guo, Lin ; Zhang, Ruxia ; Hu, Hualang ; Wang, Fei ; Pei, Zhiyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9247ec76dcaa226611bf2624b4265f40fd609bfc028ba425cab3d31a803766c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Communications Engineering</topic><topic>Composition</topic><topic>Computer Communication Networks</topic><topic>Engineering</topic><topic>Fitness</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Genetic algorithms</topic><topic>Networks</topic><topic>Normalizing</topic><topic>Set theory</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jiajun</creatorcontrib><creatorcontrib>Guo, Lin</creatorcontrib><creatorcontrib>Zhang, Ruxia</creatorcontrib><creatorcontrib>Hu, Hualang</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Pei, Zhiyuan</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jiajun</au><au>Guo, Lin</au><au>Zhang, Ruxia</au><au>Hu, Hualang</au><au>Wang, Fei</au><au>Pei, Zhiyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QoS-aware Service Composition Using Fuzzy Set Theory and Genetic Algorithm</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>102</volume><issue>2</issue><spage>1009</spage><epage>1028</epage><pages>1009-1028</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>The quality of service (QoS)-aware service composition problem is a lively topic of debate because of the fuzziness in the quality data and the user-oriented specific QoS requirements. The aim of this paper is to develop a model to select the most suitable service composition in a way that maximizes solutions expressed as functions over fuzzy/crisp QoS attributes, while satisfying user’s QoS requirements. In this paper, based on fuzzy set theory (FST) and genetic algorithm (GA), a triangular fuzzy genetic algorithm (TGA) is proposed for solving the service composition problem. The following set of strategies are presented: a quality model including crisp and fuzzy properties represented by triangular fuzzy numbers, a feasible method of normalizing the QoS matrix, aggregating formulas of each control structure for eight properties, a practicable method of defuzzification, a global best strategy with a fitness function which calculates the QoS priority vector and is considered as an objective evaluation criterion for selecting an optimal solution that meets user’s preferences best. Empirical comparisons with two algorithms on different scales of composite service indicate that TGA is highly competitive in regards to search capability, especially when the problem size is large. The results may be helpful to designers in selecting the best services for building a service-oriented system.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-017-5129-8</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0929-6212
ispartof Wireless personal communications, 2018-09, Vol.102 (2), p.1009-1028
issn 0929-6212
1572-834X
language eng
recordid cdi_proquest_journals_2099071844
source SpringerLink Journals - AutoHoldings
subjects Communications Engineering
Composition
Computer Communication Networks
Engineering
Fitness
Fuzzy set theory
Fuzzy sets
Genetic algorithms
Networks
Normalizing
Set theory
Signal,Image and Speech Processing
title QoS-aware Service Composition Using Fuzzy Set Theory and Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QoS-aware%20Service%20Composition%20Using%20Fuzzy%20Set%20Theory%20and%20Genetic%20Algorithm&rft.jtitle=Wireless%20personal%20communications&rft.au=Xu,%20Jiajun&rft.date=2018-09-01&rft.volume=102&rft.issue=2&rft.spage=1009&rft.epage=1028&rft.pages=1009-1028&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-017-5129-8&rft_dat=%3Cproquest_cross%3E2099071844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099071844&rft_id=info:pmid/&rfr_iscdi=true