The pediatric acenocoumarol dosing algorithm: the Children Anticoagulation and Pharmacogenetics Study

Essentials A pediatric pharmacogenetic dosing algorithm for acenocoumarol has not yet been developed. We conducted a multicenter retrospective follow‐up study in children in the Netherlands. Body surface area and indication explained 45.0% of the variability in dose requirement. Adding the genotypes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thrombosis and haemostasis 2018-09, Vol.16 (9), p.1732-1742
Hauptverfasser: Maagdenberg, H., Bierings, M. B., Ommen, C. H., Meer, F. J. M., Appel, I. M., Tamminga, R. Y. J., Cessie, S., Swen, J. J., Straaten, T., Boer, A., Maitland‐van der Zee, A. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1742
container_issue 9
container_start_page 1732
container_title Journal of thrombosis and haemostasis
container_volume 16
creator Maagdenberg, H.
Bierings, M. B.
Ommen, C. H.
Meer, F. J. M.
Appel, I. M.
Tamminga, R. Y. J.
Cessie, S.
Swen, J. J.
Straaten, T.
Boer, A.
Maitland‐van der Zee, A. H.
description Essentials A pediatric pharmacogenetic dosing algorithm for acenocoumarol has not yet been developed. We conducted a multicenter retrospective follow‐up study in children in the Netherlands. Body surface area and indication explained 45.0% of the variability in dose requirement. Adding the genotypes of VKORC1, CYP2C9 and CYP2C18 to the algorithm increased this to 61.8%. Summary Background The large variability in dose requirement of vitamin K antagonists is well known. For warfarin, pediatric dosing algorithms have been developed to predict the correct dose for a patient; however, this is not the case for acenocoumarol. Objectives To develop dosing algorithms for pediatric patients receiving acenocoumarol with and without genetic information. Methods The Children Anticoagulation and Pharmacogenetics Study was designed as a multicenter retrospective follow‐up study in Dutch anticoagulation clinics and children's hospitals. Pediatric patients who used acenocoumarol between 1995 and 2014 were selected for inclusion. Clinical information and saliva samples for genotyping of the genes encoding cytochrome P450 (CYP) 2C9, vitamin K epoxide reductase complex subunit 1 (VKORC1), CYP4F2, CYP2C18 and CYP3A4 were collected. Linear regression was used to analyze their association with the log mean stable dose. A stable period was defined as three or more consecutive International Normalized Ratio measurements within the therapeutic range over a period of ≥ 3 weeks. Results In total, 175 patients were included in the study, of whom 86 had a stable period and no missing clinical information (clinical cohort; median age 8.9 years, and 49% female). For 80 of these 86 patients, genetic information was also available (genetic cohort). The clinical algorithm, containing body surface area and indication, explained 45.0% of the variability in dose requirement of acenocoumarol. After addition of the VKORC1, CYP2C9, and CYP2C18 genotypes to the algorithm, this increased to 61.8%. Conclusions These findings show that clinical factors had the largest impact on the required dose of acenocoumarol in pediatric patients. Nevertheless, genetic factors, and especially VKORC1, also explained a significant part of the variability.
doi_str_mv 10.1111/jth.14211
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2098964854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2098964854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-db69cdcd36fbe132b227560b532f6c5b0e28719577bd06b8d0b4d13d0ef4e1953</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRbK0u_AMy4MpF2nnkMXFXilqloGBdh3klmZJm6mSC9N87mtadd3Mv936cyzkAXGM0xaFmG19PcUwwPgFjnFAWZYymp8c5p3QELrpugxDOE4LOwYjkOU1QTMdAr2sNd1oZ7p2RkEvdWmn7LXe2gcp2pq0gbyrrjK-399AHelGbRjndwnnrjbS86hvujW0hbxV8q7nbcmkr3epw7eC779X-EpyVvOn01aFPwMfjw3qxjFavT8-L-SqSlDEcKZHmUklF01JoTIkgJEtSJBJKylQmAmnCsuAhy4RCqWAKiVhhqpAuYx32dAJuB92ds5-97nyxsb1rw8uCoJzlacySOFB3AyWd7Tqny2LnTHC8LzAqfgItQqDFb6CBvTko9mKr1R95TDAAswH4Mo3e_69UvKyXg-Q3xWSAgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098964854</pqid></control><display><type>article</type><title>The pediatric acenocoumarol dosing algorithm: the Children Anticoagulation and Pharmacogenetics Study</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Maagdenberg, H. ; Bierings, M. B. ; Ommen, C. H. ; Meer, F. J. M. ; Appel, I. M. ; Tamminga, R. Y. J. ; Cessie, S. ; Swen, J. J. ; Straaten, T. ; Boer, A. ; Maitland‐van der Zee, A. H.</creator><creatorcontrib>Maagdenberg, H. ; Bierings, M. B. ; Ommen, C. H. ; Meer, F. J. M. ; Appel, I. M. ; Tamminga, R. Y. J. ; Cessie, S. ; Swen, J. J. ; Straaten, T. ; Boer, A. ; Maitland‐van der Zee, A. H.</creatorcontrib><description>Essentials A pediatric pharmacogenetic dosing algorithm for acenocoumarol has not yet been developed. We conducted a multicenter retrospective follow‐up study in children in the Netherlands. Body surface area and indication explained 45.0% of the variability in dose requirement. Adding the genotypes of VKORC1, CYP2C9 and CYP2C18 to the algorithm increased this to 61.8%. Summary Background The large variability in dose requirement of vitamin K antagonists is well known. For warfarin, pediatric dosing algorithms have been developed to predict the correct dose for a patient; however, this is not the case for acenocoumarol. Objectives To develop dosing algorithms for pediatric patients receiving acenocoumarol with and without genetic information. Methods The Children Anticoagulation and Pharmacogenetics Study was designed as a multicenter retrospective follow‐up study in Dutch anticoagulation clinics and children's hospitals. Pediatric patients who used acenocoumarol between 1995 and 2014 were selected for inclusion. Clinical information and saliva samples for genotyping of the genes encoding cytochrome P450 (CYP) 2C9, vitamin K epoxide reductase complex subunit 1 (VKORC1), CYP4F2, CYP2C18 and CYP3A4 were collected. Linear regression was used to analyze their association with the log mean stable dose. A stable period was defined as three or more consecutive International Normalized Ratio measurements within the therapeutic range over a period of ≥ 3 weeks. Results In total, 175 patients were included in the study, of whom 86 had a stable period and no missing clinical information (clinical cohort; median age 8.9 years, and 49% female). For 80 of these 86 patients, genetic information was also available (genetic cohort). The clinical algorithm, containing body surface area and indication, explained 45.0% of the variability in dose requirement of acenocoumarol. After addition of the VKORC1, CYP2C9, and CYP2C18 genotypes to the algorithm, this increased to 61.8%. Conclusions These findings show that clinical factors had the largest impact on the required dose of acenocoumarol in pediatric patients. Nevertheless, genetic factors, and especially VKORC1, also explained a significant part of the variability.</description><identifier>ISSN: 1538-7933</identifier><identifier>ISSN: 1538-7836</identifier><identifier>EISSN: 1538-7836</identifier><identifier>DOI: 10.1111/jth.14211</identifier><identifier>PMID: 29935043</identifier><language>eng</language><publisher>England: Elsevier Limited</publisher><subject>acenocoumarol ; Acenocoumarol - administration &amp; dosage ; Acenocoumarol - analysis ; Acenocoumarol - pharmacokinetics ; Adolescent ; Age Factors ; Algorithms ; Antagonists ; Anticoagulants - administration &amp; dosage ; Anticoagulants - analysis ; Anticoagulants - pharmacokinetics ; Biological Variation, Individual ; Biotransformation - genetics ; Body Surface Area ; Child ; Child, Preschool ; Children ; coumarins ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; Cytochrome P450 ; Dose-Response Relationship, Drug ; Female ; Follow-Up Studies ; Genetic Association Studies ; Genetic factors ; Genotypes ; Genotyping ; Humans ; Infant ; Male ; Models, Biological ; Pediatrics ; Pharmacogenetics ; Polymorphism, Single Nucleotide ; Practice Guidelines as Topic ; Reductase ; Retrospective Studies ; Saliva ; Saliva - chemistry ; Thrombophilia - drug therapy ; Vitamin K ; Vitamin K - antagonists &amp; inhibitors ; Warfarin</subject><ispartof>Journal of thrombosis and haemostasis, 2018-09, Vol.16 (9), p.1732-1742</ispartof><rights>2018 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.</rights><rights>2018 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.</rights><rights>Copyright © 2018 International Society on Thrombosis and Haemostasis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-db69cdcd36fbe132b227560b532f6c5b0e28719577bd06b8d0b4d13d0ef4e1953</citedby><cites>FETCH-LOGICAL-c3881-db69cdcd36fbe132b227560b532f6c5b0e28719577bd06b8d0b4d13d0ef4e1953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29935043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maagdenberg, H.</creatorcontrib><creatorcontrib>Bierings, M. B.</creatorcontrib><creatorcontrib>Ommen, C. H.</creatorcontrib><creatorcontrib>Meer, F. J. M.</creatorcontrib><creatorcontrib>Appel, I. M.</creatorcontrib><creatorcontrib>Tamminga, R. Y. J.</creatorcontrib><creatorcontrib>Cessie, S.</creatorcontrib><creatorcontrib>Swen, J. J.</creatorcontrib><creatorcontrib>Straaten, T.</creatorcontrib><creatorcontrib>Boer, A.</creatorcontrib><creatorcontrib>Maitland‐van der Zee, A. H.</creatorcontrib><title>The pediatric acenocoumarol dosing algorithm: the Children Anticoagulation and Pharmacogenetics Study</title><title>Journal of thrombosis and haemostasis</title><addtitle>J Thromb Haemost</addtitle><description>Essentials A pediatric pharmacogenetic dosing algorithm for acenocoumarol has not yet been developed. We conducted a multicenter retrospective follow‐up study in children in the Netherlands. Body surface area and indication explained 45.0% of the variability in dose requirement. Adding the genotypes of VKORC1, CYP2C9 and CYP2C18 to the algorithm increased this to 61.8%. Summary Background The large variability in dose requirement of vitamin K antagonists is well known. For warfarin, pediatric dosing algorithms have been developed to predict the correct dose for a patient; however, this is not the case for acenocoumarol. Objectives To develop dosing algorithms for pediatric patients receiving acenocoumarol with and without genetic information. Methods The Children Anticoagulation and Pharmacogenetics Study was designed as a multicenter retrospective follow‐up study in Dutch anticoagulation clinics and children's hospitals. Pediatric patients who used acenocoumarol between 1995 and 2014 were selected for inclusion. Clinical information and saliva samples for genotyping of the genes encoding cytochrome P450 (CYP) 2C9, vitamin K epoxide reductase complex subunit 1 (VKORC1), CYP4F2, CYP2C18 and CYP3A4 were collected. Linear regression was used to analyze their association with the log mean stable dose. A stable period was defined as three or more consecutive International Normalized Ratio measurements within the therapeutic range over a period of ≥ 3 weeks. Results In total, 175 patients were included in the study, of whom 86 had a stable period and no missing clinical information (clinical cohort; median age 8.9 years, and 49% female). For 80 of these 86 patients, genetic information was also available (genetic cohort). The clinical algorithm, containing body surface area and indication, explained 45.0% of the variability in dose requirement of acenocoumarol. After addition of the VKORC1, CYP2C9, and CYP2C18 genotypes to the algorithm, this increased to 61.8%. Conclusions These findings show that clinical factors had the largest impact on the required dose of acenocoumarol in pediatric patients. Nevertheless, genetic factors, and especially VKORC1, also explained a significant part of the variability.</description><subject>acenocoumarol</subject><subject>Acenocoumarol - administration &amp; dosage</subject><subject>Acenocoumarol - analysis</subject><subject>Acenocoumarol - pharmacokinetics</subject><subject>Adolescent</subject><subject>Age Factors</subject><subject>Algorithms</subject><subject>Antagonists</subject><subject>Anticoagulants - administration &amp; dosage</subject><subject>Anticoagulants - analysis</subject><subject>Anticoagulants - pharmacokinetics</subject><subject>Biological Variation, Individual</subject><subject>Biotransformation - genetics</subject><subject>Body Surface Area</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Children</subject><subject>coumarins</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Cytochrome P450</subject><subject>Dose-Response Relationship, Drug</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>Genetic Association Studies</subject><subject>Genetic factors</subject><subject>Genotypes</subject><subject>Genotyping</subject><subject>Humans</subject><subject>Infant</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Pediatrics</subject><subject>Pharmacogenetics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Practice Guidelines as Topic</subject><subject>Reductase</subject><subject>Retrospective Studies</subject><subject>Saliva</subject><subject>Saliva - chemistry</subject><subject>Thrombophilia - drug therapy</subject><subject>Vitamin K</subject><subject>Vitamin K - antagonists &amp; inhibitors</subject><subject>Warfarin</subject><issn>1538-7933</issn><issn>1538-7836</issn><issn>1538-7836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kEtLw0AUhQdRbK0u_AMy4MpF2nnkMXFXilqloGBdh3klmZJm6mSC9N87mtadd3Mv936cyzkAXGM0xaFmG19PcUwwPgFjnFAWZYymp8c5p3QELrpugxDOE4LOwYjkOU1QTMdAr2sNd1oZ7p2RkEvdWmn7LXe2gcp2pq0gbyrrjK-399AHelGbRjndwnnrjbS86hvujW0hbxV8q7nbcmkr3epw7eC779X-EpyVvOn01aFPwMfjw3qxjFavT8-L-SqSlDEcKZHmUklF01JoTIkgJEtSJBJKylQmAmnCsuAhy4RCqWAKiVhhqpAuYx32dAJuB92ds5-97nyxsb1rw8uCoJzlacySOFB3AyWd7Tqny2LnTHC8LzAqfgItQqDFb6CBvTko9mKr1R95TDAAswH4Mo3e_69UvKyXg-Q3xWSAgg</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Maagdenberg, H.</creator><creator>Bierings, M. B.</creator><creator>Ommen, C. H.</creator><creator>Meer, F. J. M.</creator><creator>Appel, I. M.</creator><creator>Tamminga, R. Y. J.</creator><creator>Cessie, S.</creator><creator>Swen, J. J.</creator><creator>Straaten, T.</creator><creator>Boer, A.</creator><creator>Maitland‐van der Zee, A. H.</creator><general>Elsevier Limited</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>K9.</scope></search><sort><creationdate>201809</creationdate><title>The pediatric acenocoumarol dosing algorithm: the Children Anticoagulation and Pharmacogenetics Study</title><author>Maagdenberg, H. ; Bierings, M. B. ; Ommen, C. H. ; Meer, F. J. M. ; Appel, I. M. ; Tamminga, R. Y. J. ; Cessie, S. ; Swen, J. J. ; Straaten, T. ; Boer, A. ; Maitland‐van der Zee, A. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-db69cdcd36fbe132b227560b532f6c5b0e28719577bd06b8d0b4d13d0ef4e1953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acenocoumarol</topic><topic>Acenocoumarol - administration &amp; dosage</topic><topic>Acenocoumarol - analysis</topic><topic>Acenocoumarol - pharmacokinetics</topic><topic>Adolescent</topic><topic>Age Factors</topic><topic>Algorithms</topic><topic>Antagonists</topic><topic>Anticoagulants - administration &amp; dosage</topic><topic>Anticoagulants - analysis</topic><topic>Anticoagulants - pharmacokinetics</topic><topic>Biological Variation, Individual</topic><topic>Biotransformation - genetics</topic><topic>Body Surface Area</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Children</topic><topic>coumarins</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Cytochrome P450</topic><topic>Dose-Response Relationship, Drug</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>Genetic Association Studies</topic><topic>Genetic factors</topic><topic>Genotypes</topic><topic>Genotyping</topic><topic>Humans</topic><topic>Infant</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Pediatrics</topic><topic>Pharmacogenetics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Practice Guidelines as Topic</topic><topic>Reductase</topic><topic>Retrospective Studies</topic><topic>Saliva</topic><topic>Saliva - chemistry</topic><topic>Thrombophilia - drug therapy</topic><topic>Vitamin K</topic><topic>Vitamin K - antagonists &amp; inhibitors</topic><topic>Warfarin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maagdenberg, H.</creatorcontrib><creatorcontrib>Bierings, M. B.</creatorcontrib><creatorcontrib>Ommen, C. H.</creatorcontrib><creatorcontrib>Meer, F. J. M.</creatorcontrib><creatorcontrib>Appel, I. M.</creatorcontrib><creatorcontrib>Tamminga, R. Y. J.</creatorcontrib><creatorcontrib>Cessie, S.</creatorcontrib><creatorcontrib>Swen, J. J.</creatorcontrib><creatorcontrib>Straaten, T.</creatorcontrib><creatorcontrib>Boer, A.</creatorcontrib><creatorcontrib>Maitland‐van der Zee, A. H.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of thrombosis and haemostasis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maagdenberg, H.</au><au>Bierings, M. B.</au><au>Ommen, C. H.</au><au>Meer, F. J. M.</au><au>Appel, I. M.</au><au>Tamminga, R. Y. J.</au><au>Cessie, S.</au><au>Swen, J. J.</au><au>Straaten, T.</au><au>Boer, A.</au><au>Maitland‐van der Zee, A. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The pediatric acenocoumarol dosing algorithm: the Children Anticoagulation and Pharmacogenetics Study</atitle><jtitle>Journal of thrombosis and haemostasis</jtitle><addtitle>J Thromb Haemost</addtitle><date>2018-09</date><risdate>2018</risdate><volume>16</volume><issue>9</issue><spage>1732</spage><epage>1742</epage><pages>1732-1742</pages><issn>1538-7933</issn><issn>1538-7836</issn><eissn>1538-7836</eissn><abstract>Essentials A pediatric pharmacogenetic dosing algorithm for acenocoumarol has not yet been developed. We conducted a multicenter retrospective follow‐up study in children in the Netherlands. Body surface area and indication explained 45.0% of the variability in dose requirement. Adding the genotypes of VKORC1, CYP2C9 and CYP2C18 to the algorithm increased this to 61.8%. Summary Background The large variability in dose requirement of vitamin K antagonists is well known. For warfarin, pediatric dosing algorithms have been developed to predict the correct dose for a patient; however, this is not the case for acenocoumarol. Objectives To develop dosing algorithms for pediatric patients receiving acenocoumarol with and without genetic information. Methods The Children Anticoagulation and Pharmacogenetics Study was designed as a multicenter retrospective follow‐up study in Dutch anticoagulation clinics and children's hospitals. Pediatric patients who used acenocoumarol between 1995 and 2014 were selected for inclusion. Clinical information and saliva samples for genotyping of the genes encoding cytochrome P450 (CYP) 2C9, vitamin K epoxide reductase complex subunit 1 (VKORC1), CYP4F2, CYP2C18 and CYP3A4 were collected. Linear regression was used to analyze their association with the log mean stable dose. A stable period was defined as three or more consecutive International Normalized Ratio measurements within the therapeutic range over a period of ≥ 3 weeks. Results In total, 175 patients were included in the study, of whom 86 had a stable period and no missing clinical information (clinical cohort; median age 8.9 years, and 49% female). For 80 of these 86 patients, genetic information was also available (genetic cohort). The clinical algorithm, containing body surface area and indication, explained 45.0% of the variability in dose requirement of acenocoumarol. After addition of the VKORC1, CYP2C9, and CYP2C18 genotypes to the algorithm, this increased to 61.8%. Conclusions These findings show that clinical factors had the largest impact on the required dose of acenocoumarol in pediatric patients. Nevertheless, genetic factors, and especially VKORC1, also explained a significant part of the variability.</abstract><cop>England</cop><pub>Elsevier Limited</pub><pmid>29935043</pmid><doi>10.1111/jth.14211</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1538-7933
ispartof Journal of thrombosis and haemostasis, 2018-09, Vol.16 (9), p.1732-1742
issn 1538-7933
1538-7836
1538-7836
language eng
recordid cdi_proquest_journals_2098964854
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects acenocoumarol
Acenocoumarol - administration & dosage
Acenocoumarol - analysis
Acenocoumarol - pharmacokinetics
Adolescent
Age Factors
Algorithms
Antagonists
Anticoagulants - administration & dosage
Anticoagulants - analysis
Anticoagulants - pharmacokinetics
Biological Variation, Individual
Biotransformation - genetics
Body Surface Area
Child
Child, Preschool
Children
coumarins
Cytochrome P-450 Enzyme System - genetics
Cytochrome P-450 Enzyme System - metabolism
Cytochrome P450
Dose-Response Relationship, Drug
Female
Follow-Up Studies
Genetic Association Studies
Genetic factors
Genotypes
Genotyping
Humans
Infant
Male
Models, Biological
Pediatrics
Pharmacogenetics
Polymorphism, Single Nucleotide
Practice Guidelines as Topic
Reductase
Retrospective Studies
Saliva
Saliva - chemistry
Thrombophilia - drug therapy
Vitamin K
Vitamin K - antagonists & inhibitors
Warfarin
title The pediatric acenocoumarol dosing algorithm: the Children Anticoagulation and Pharmacogenetics Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20pediatric%20acenocoumarol%20dosing%20algorithm:%20the%20Children%20Anticoagulation%20and%20Pharmacogenetics%20Study&rft.jtitle=Journal%20of%20thrombosis%20and%20haemostasis&rft.au=Maagdenberg,%20H.&rft.date=2018-09&rft.volume=16&rft.issue=9&rft.spage=1732&rft.epage=1742&rft.pages=1732-1742&rft.issn=1538-7933&rft.eissn=1538-7836&rft_id=info:doi/10.1111/jth.14211&rft_dat=%3Cproquest_cross%3E2098964854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2098964854&rft_id=info:pmid/29935043&rfr_iscdi=true