The pediatric acenocoumarol dosing algorithm: the Children Anticoagulation and Pharmacogenetics Study
Essentials A pediatric pharmacogenetic dosing algorithm for acenocoumarol has not yet been developed. We conducted a multicenter retrospective follow‐up study in children in the Netherlands. Body surface area and indication explained 45.0% of the variability in dose requirement. Adding the genotypes...
Gespeichert in:
Veröffentlicht in: | Journal of thrombosis and haemostasis 2018-09, Vol.16 (9), p.1732-1742 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1742 |
---|---|
container_issue | 9 |
container_start_page | 1732 |
container_title | Journal of thrombosis and haemostasis |
container_volume | 16 |
creator | Maagdenberg, H. Bierings, M. B. Ommen, C. H. Meer, F. J. M. Appel, I. M. Tamminga, R. Y. J. Cessie, S. Swen, J. J. Straaten, T. Boer, A. Maitland‐van der Zee, A. H. |
description | Essentials
A pediatric pharmacogenetic dosing algorithm for acenocoumarol has not yet been developed.
We conducted a multicenter retrospective follow‐up study in children in the Netherlands.
Body surface area and indication explained 45.0% of the variability in dose requirement.
Adding the genotypes of VKORC1, CYP2C9 and CYP2C18 to the algorithm increased this to 61.8%.
Summary
Background
The large variability in dose requirement of vitamin K antagonists is well known. For warfarin, pediatric dosing algorithms have been developed to predict the correct dose for a patient; however, this is not the case for acenocoumarol.
Objectives
To develop dosing algorithms for pediatric patients receiving acenocoumarol with and without genetic information.
Methods
The Children Anticoagulation and Pharmacogenetics Study was designed as a multicenter retrospective follow‐up study in Dutch anticoagulation clinics and children's hospitals. Pediatric patients who used acenocoumarol between 1995 and 2014 were selected for inclusion. Clinical information and saliva samples for genotyping of the genes encoding cytochrome P450 (CYP) 2C9, vitamin K epoxide reductase complex subunit 1 (VKORC1), CYP4F2, CYP2C18 and CYP3A4 were collected. Linear regression was used to analyze their association with the log mean stable dose. A stable period was defined as three or more consecutive International Normalized Ratio measurements within the therapeutic range over a period of ≥ 3 weeks.
Results
In total, 175 patients were included in the study, of whom 86 had a stable period and no missing clinical information (clinical cohort; median age 8.9 years, and 49% female). For 80 of these 86 patients, genetic information was also available (genetic cohort). The clinical algorithm, containing body surface area and indication, explained 45.0% of the variability in dose requirement of acenocoumarol. After addition of the VKORC1, CYP2C9, and CYP2C18 genotypes to the algorithm, this increased to 61.8%.
Conclusions
These findings show that clinical factors had the largest impact on the required dose of acenocoumarol in pediatric patients. Nevertheless, genetic factors, and especially VKORC1, also explained a significant part of the variability. |
doi_str_mv | 10.1111/jth.14211 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2098964854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2098964854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-db69cdcd36fbe132b227560b532f6c5b0e28719577bd06b8d0b4d13d0ef4e1953</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRbK0u_AMy4MpF2nnkMXFXilqloGBdh3klmZJm6mSC9N87mtadd3Mv936cyzkAXGM0xaFmG19PcUwwPgFjnFAWZYymp8c5p3QELrpugxDOE4LOwYjkOU1QTMdAr2sNd1oZ7p2RkEvdWmn7LXe2gcp2pq0gbyrrjK-399AHelGbRjndwnnrjbS86hvujW0hbxV8q7nbcmkr3epw7eC779X-EpyVvOn01aFPwMfjw3qxjFavT8-L-SqSlDEcKZHmUklF01JoTIkgJEtSJBJKylQmAmnCsuAhy4RCqWAKiVhhqpAuYx32dAJuB92ds5-97nyxsb1rw8uCoJzlacySOFB3AyWd7Tqny2LnTHC8LzAqfgItQqDFb6CBvTko9mKr1R95TDAAswH4Mo3e_69UvKyXg-Q3xWSAgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098964854</pqid></control><display><type>article</type><title>The pediatric acenocoumarol dosing algorithm: the Children Anticoagulation and Pharmacogenetics Study</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Maagdenberg, H. ; Bierings, M. B. ; Ommen, C. H. ; Meer, F. J. M. ; Appel, I. M. ; Tamminga, R. Y. J. ; Cessie, S. ; Swen, J. J. ; Straaten, T. ; Boer, A. ; Maitland‐van der Zee, A. H.</creator><creatorcontrib>Maagdenberg, H. ; Bierings, M. B. ; Ommen, C. H. ; Meer, F. J. M. ; Appel, I. M. ; Tamminga, R. Y. J. ; Cessie, S. ; Swen, J. J. ; Straaten, T. ; Boer, A. ; Maitland‐van der Zee, A. H.</creatorcontrib><description>Essentials
A pediatric pharmacogenetic dosing algorithm for acenocoumarol has not yet been developed.
We conducted a multicenter retrospective follow‐up study in children in the Netherlands.
Body surface area and indication explained 45.0% of the variability in dose requirement.
Adding the genotypes of VKORC1, CYP2C9 and CYP2C18 to the algorithm increased this to 61.8%.
Summary
Background
The large variability in dose requirement of vitamin K antagonists is well known. For warfarin, pediatric dosing algorithms have been developed to predict the correct dose for a patient; however, this is not the case for acenocoumarol.
Objectives
To develop dosing algorithms for pediatric patients receiving acenocoumarol with and without genetic information.
Methods
The Children Anticoagulation and Pharmacogenetics Study was designed as a multicenter retrospective follow‐up study in Dutch anticoagulation clinics and children's hospitals. Pediatric patients who used acenocoumarol between 1995 and 2014 were selected for inclusion. Clinical information and saliva samples for genotyping of the genes encoding cytochrome P450 (CYP) 2C9, vitamin K epoxide reductase complex subunit 1 (VKORC1), CYP4F2, CYP2C18 and CYP3A4 were collected. Linear regression was used to analyze their association with the log mean stable dose. A stable period was defined as three or more consecutive International Normalized Ratio measurements within the therapeutic range over a period of ≥ 3 weeks.
Results
In total, 175 patients were included in the study, of whom 86 had a stable period and no missing clinical information (clinical cohort; median age 8.9 years, and 49% female). For 80 of these 86 patients, genetic information was also available (genetic cohort). The clinical algorithm, containing body surface area and indication, explained 45.0% of the variability in dose requirement of acenocoumarol. After addition of the VKORC1, CYP2C9, and CYP2C18 genotypes to the algorithm, this increased to 61.8%.
Conclusions
These findings show that clinical factors had the largest impact on the required dose of acenocoumarol in pediatric patients. Nevertheless, genetic factors, and especially VKORC1, also explained a significant part of the variability.</description><identifier>ISSN: 1538-7933</identifier><identifier>ISSN: 1538-7836</identifier><identifier>EISSN: 1538-7836</identifier><identifier>DOI: 10.1111/jth.14211</identifier><identifier>PMID: 29935043</identifier><language>eng</language><publisher>England: Elsevier Limited</publisher><subject>acenocoumarol ; Acenocoumarol - administration & dosage ; Acenocoumarol - analysis ; Acenocoumarol - pharmacokinetics ; Adolescent ; Age Factors ; Algorithms ; Antagonists ; Anticoagulants - administration & dosage ; Anticoagulants - analysis ; Anticoagulants - pharmacokinetics ; Biological Variation, Individual ; Biotransformation - genetics ; Body Surface Area ; Child ; Child, Preschool ; Children ; coumarins ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; Cytochrome P450 ; Dose-Response Relationship, Drug ; Female ; Follow-Up Studies ; Genetic Association Studies ; Genetic factors ; Genotypes ; Genotyping ; Humans ; Infant ; Male ; Models, Biological ; Pediatrics ; Pharmacogenetics ; Polymorphism, Single Nucleotide ; Practice Guidelines as Topic ; Reductase ; Retrospective Studies ; Saliva ; Saliva - chemistry ; Thrombophilia - drug therapy ; Vitamin K ; Vitamin K - antagonists & inhibitors ; Warfarin</subject><ispartof>Journal of thrombosis and haemostasis, 2018-09, Vol.16 (9), p.1732-1742</ispartof><rights>2018 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.</rights><rights>2018 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.</rights><rights>Copyright © 2018 International Society on Thrombosis and Haemostasis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-db69cdcd36fbe132b227560b532f6c5b0e28719577bd06b8d0b4d13d0ef4e1953</citedby><cites>FETCH-LOGICAL-c3881-db69cdcd36fbe132b227560b532f6c5b0e28719577bd06b8d0b4d13d0ef4e1953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29935043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maagdenberg, H.</creatorcontrib><creatorcontrib>Bierings, M. B.</creatorcontrib><creatorcontrib>Ommen, C. H.</creatorcontrib><creatorcontrib>Meer, F. J. M.</creatorcontrib><creatorcontrib>Appel, I. M.</creatorcontrib><creatorcontrib>Tamminga, R. Y. J.</creatorcontrib><creatorcontrib>Cessie, S.</creatorcontrib><creatorcontrib>Swen, J. J.</creatorcontrib><creatorcontrib>Straaten, T.</creatorcontrib><creatorcontrib>Boer, A.</creatorcontrib><creatorcontrib>Maitland‐van der Zee, A. H.</creatorcontrib><title>The pediatric acenocoumarol dosing algorithm: the Children Anticoagulation and Pharmacogenetics Study</title><title>Journal of thrombosis and haemostasis</title><addtitle>J Thromb Haemost</addtitle><description>Essentials
A pediatric pharmacogenetic dosing algorithm for acenocoumarol has not yet been developed.
We conducted a multicenter retrospective follow‐up study in children in the Netherlands.
Body surface area and indication explained 45.0% of the variability in dose requirement.
Adding the genotypes of VKORC1, CYP2C9 and CYP2C18 to the algorithm increased this to 61.8%.
Summary
Background
The large variability in dose requirement of vitamin K antagonists is well known. For warfarin, pediatric dosing algorithms have been developed to predict the correct dose for a patient; however, this is not the case for acenocoumarol.
Objectives
To develop dosing algorithms for pediatric patients receiving acenocoumarol with and without genetic information.
Methods
The Children Anticoagulation and Pharmacogenetics Study was designed as a multicenter retrospective follow‐up study in Dutch anticoagulation clinics and children's hospitals. Pediatric patients who used acenocoumarol between 1995 and 2014 were selected for inclusion. Clinical information and saliva samples for genotyping of the genes encoding cytochrome P450 (CYP) 2C9, vitamin K epoxide reductase complex subunit 1 (VKORC1), CYP4F2, CYP2C18 and CYP3A4 were collected. Linear regression was used to analyze their association with the log mean stable dose. A stable period was defined as three or more consecutive International Normalized Ratio measurements within the therapeutic range over a period of ≥ 3 weeks.
Results
In total, 175 patients were included in the study, of whom 86 had a stable period and no missing clinical information (clinical cohort; median age 8.9 years, and 49% female). For 80 of these 86 patients, genetic information was also available (genetic cohort). The clinical algorithm, containing body surface area and indication, explained 45.0% of the variability in dose requirement of acenocoumarol. After addition of the VKORC1, CYP2C9, and CYP2C18 genotypes to the algorithm, this increased to 61.8%.
Conclusions
These findings show that clinical factors had the largest impact on the required dose of acenocoumarol in pediatric patients. Nevertheless, genetic factors, and especially VKORC1, also explained a significant part of the variability.</description><subject>acenocoumarol</subject><subject>Acenocoumarol - administration & dosage</subject><subject>Acenocoumarol - analysis</subject><subject>Acenocoumarol - pharmacokinetics</subject><subject>Adolescent</subject><subject>Age Factors</subject><subject>Algorithms</subject><subject>Antagonists</subject><subject>Anticoagulants - administration & dosage</subject><subject>Anticoagulants - analysis</subject><subject>Anticoagulants - pharmacokinetics</subject><subject>Biological Variation, Individual</subject><subject>Biotransformation - genetics</subject><subject>Body Surface Area</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Children</subject><subject>coumarins</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Cytochrome P450</subject><subject>Dose-Response Relationship, Drug</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>Genetic Association Studies</subject><subject>Genetic factors</subject><subject>Genotypes</subject><subject>Genotyping</subject><subject>Humans</subject><subject>Infant</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Pediatrics</subject><subject>Pharmacogenetics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Practice Guidelines as Topic</subject><subject>Reductase</subject><subject>Retrospective Studies</subject><subject>Saliva</subject><subject>Saliva - chemistry</subject><subject>Thrombophilia - drug therapy</subject><subject>Vitamin K</subject><subject>Vitamin K - antagonists & inhibitors</subject><subject>Warfarin</subject><issn>1538-7933</issn><issn>1538-7836</issn><issn>1538-7836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kEtLw0AUhQdRbK0u_AMy4MpF2nnkMXFXilqloGBdh3klmZJm6mSC9N87mtadd3Mv936cyzkAXGM0xaFmG19PcUwwPgFjnFAWZYymp8c5p3QELrpugxDOE4LOwYjkOU1QTMdAr2sNd1oZ7p2RkEvdWmn7LXe2gcp2pq0gbyrrjK-399AHelGbRjndwnnrjbS86hvujW0hbxV8q7nbcmkr3epw7eC779X-EpyVvOn01aFPwMfjw3qxjFavT8-L-SqSlDEcKZHmUklF01JoTIkgJEtSJBJKylQmAmnCsuAhy4RCqWAKiVhhqpAuYx32dAJuB92ds5-97nyxsb1rw8uCoJzlacySOFB3AyWd7Tqny2LnTHC8LzAqfgItQqDFb6CBvTko9mKr1R95TDAAswH4Mo3e_69UvKyXg-Q3xWSAgg</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Maagdenberg, H.</creator><creator>Bierings, M. B.</creator><creator>Ommen, C. H.</creator><creator>Meer, F. J. M.</creator><creator>Appel, I. M.</creator><creator>Tamminga, R. Y. J.</creator><creator>Cessie, S.</creator><creator>Swen, J. J.</creator><creator>Straaten, T.</creator><creator>Boer, A.</creator><creator>Maitland‐van der Zee, A. H.</creator><general>Elsevier Limited</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>K9.</scope></search><sort><creationdate>201809</creationdate><title>The pediatric acenocoumarol dosing algorithm: the Children Anticoagulation and Pharmacogenetics Study</title><author>Maagdenberg, H. ; Bierings, M. B. ; Ommen, C. H. ; Meer, F. J. M. ; Appel, I. M. ; Tamminga, R. Y. J. ; Cessie, S. ; Swen, J. J. ; Straaten, T. ; Boer, A. ; Maitland‐van der Zee, A. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-db69cdcd36fbe132b227560b532f6c5b0e28719577bd06b8d0b4d13d0ef4e1953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acenocoumarol</topic><topic>Acenocoumarol - administration & dosage</topic><topic>Acenocoumarol - analysis</topic><topic>Acenocoumarol - pharmacokinetics</topic><topic>Adolescent</topic><topic>Age Factors</topic><topic>Algorithms</topic><topic>Antagonists</topic><topic>Anticoagulants - administration & dosage</topic><topic>Anticoagulants - analysis</topic><topic>Anticoagulants - pharmacokinetics</topic><topic>Biological Variation, Individual</topic><topic>Biotransformation - genetics</topic><topic>Body Surface Area</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Children</topic><topic>coumarins</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Cytochrome P450</topic><topic>Dose-Response Relationship, Drug</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>Genetic Association Studies</topic><topic>Genetic factors</topic><topic>Genotypes</topic><topic>Genotyping</topic><topic>Humans</topic><topic>Infant</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Pediatrics</topic><topic>Pharmacogenetics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Practice Guidelines as Topic</topic><topic>Reductase</topic><topic>Retrospective Studies</topic><topic>Saliva</topic><topic>Saliva - chemistry</topic><topic>Thrombophilia - drug therapy</topic><topic>Vitamin K</topic><topic>Vitamin K - antagonists & inhibitors</topic><topic>Warfarin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maagdenberg, H.</creatorcontrib><creatorcontrib>Bierings, M. B.</creatorcontrib><creatorcontrib>Ommen, C. H.</creatorcontrib><creatorcontrib>Meer, F. J. M.</creatorcontrib><creatorcontrib>Appel, I. M.</creatorcontrib><creatorcontrib>Tamminga, R. Y. J.</creatorcontrib><creatorcontrib>Cessie, S.</creatorcontrib><creatorcontrib>Swen, J. J.</creatorcontrib><creatorcontrib>Straaten, T.</creatorcontrib><creatorcontrib>Boer, A.</creatorcontrib><creatorcontrib>Maitland‐van der Zee, A. H.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of thrombosis and haemostasis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maagdenberg, H.</au><au>Bierings, M. B.</au><au>Ommen, C. H.</au><au>Meer, F. J. M.</au><au>Appel, I. M.</au><au>Tamminga, R. Y. J.</au><au>Cessie, S.</au><au>Swen, J. J.</au><au>Straaten, T.</au><au>Boer, A.</au><au>Maitland‐van der Zee, A. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The pediatric acenocoumarol dosing algorithm: the Children Anticoagulation and Pharmacogenetics Study</atitle><jtitle>Journal of thrombosis and haemostasis</jtitle><addtitle>J Thromb Haemost</addtitle><date>2018-09</date><risdate>2018</risdate><volume>16</volume><issue>9</issue><spage>1732</spage><epage>1742</epage><pages>1732-1742</pages><issn>1538-7933</issn><issn>1538-7836</issn><eissn>1538-7836</eissn><abstract>Essentials
A pediatric pharmacogenetic dosing algorithm for acenocoumarol has not yet been developed.
We conducted a multicenter retrospective follow‐up study in children in the Netherlands.
Body surface area and indication explained 45.0% of the variability in dose requirement.
Adding the genotypes of VKORC1, CYP2C9 and CYP2C18 to the algorithm increased this to 61.8%.
Summary
Background
The large variability in dose requirement of vitamin K antagonists is well known. For warfarin, pediatric dosing algorithms have been developed to predict the correct dose for a patient; however, this is not the case for acenocoumarol.
Objectives
To develop dosing algorithms for pediatric patients receiving acenocoumarol with and without genetic information.
Methods
The Children Anticoagulation and Pharmacogenetics Study was designed as a multicenter retrospective follow‐up study in Dutch anticoagulation clinics and children's hospitals. Pediatric patients who used acenocoumarol between 1995 and 2014 were selected for inclusion. Clinical information and saliva samples for genotyping of the genes encoding cytochrome P450 (CYP) 2C9, vitamin K epoxide reductase complex subunit 1 (VKORC1), CYP4F2, CYP2C18 and CYP3A4 were collected. Linear regression was used to analyze their association with the log mean stable dose. A stable period was defined as three or more consecutive International Normalized Ratio measurements within the therapeutic range over a period of ≥ 3 weeks.
Results
In total, 175 patients were included in the study, of whom 86 had a stable period and no missing clinical information (clinical cohort; median age 8.9 years, and 49% female). For 80 of these 86 patients, genetic information was also available (genetic cohort). The clinical algorithm, containing body surface area and indication, explained 45.0% of the variability in dose requirement of acenocoumarol. After addition of the VKORC1, CYP2C9, and CYP2C18 genotypes to the algorithm, this increased to 61.8%.
Conclusions
These findings show that clinical factors had the largest impact on the required dose of acenocoumarol in pediatric patients. Nevertheless, genetic factors, and especially VKORC1, also explained a significant part of the variability.</abstract><cop>England</cop><pub>Elsevier Limited</pub><pmid>29935043</pmid><doi>10.1111/jth.14211</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1538-7933 |
ispartof | Journal of thrombosis and haemostasis, 2018-09, Vol.16 (9), p.1732-1742 |
issn | 1538-7933 1538-7836 1538-7836 |
language | eng |
recordid | cdi_proquest_journals_2098964854 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | acenocoumarol Acenocoumarol - administration & dosage Acenocoumarol - analysis Acenocoumarol - pharmacokinetics Adolescent Age Factors Algorithms Antagonists Anticoagulants - administration & dosage Anticoagulants - analysis Anticoagulants - pharmacokinetics Biological Variation, Individual Biotransformation - genetics Body Surface Area Child Child, Preschool Children coumarins Cytochrome P-450 Enzyme System - genetics Cytochrome P-450 Enzyme System - metabolism Cytochrome P450 Dose-Response Relationship, Drug Female Follow-Up Studies Genetic Association Studies Genetic factors Genotypes Genotyping Humans Infant Male Models, Biological Pediatrics Pharmacogenetics Polymorphism, Single Nucleotide Practice Guidelines as Topic Reductase Retrospective Studies Saliva Saliva - chemistry Thrombophilia - drug therapy Vitamin K Vitamin K - antagonists & inhibitors Warfarin |
title | The pediatric acenocoumarol dosing algorithm: the Children Anticoagulation and Pharmacogenetics Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20pediatric%20acenocoumarol%20dosing%20algorithm:%20the%20Children%20Anticoagulation%20and%20Pharmacogenetics%20Study&rft.jtitle=Journal%20of%20thrombosis%20and%20haemostasis&rft.au=Maagdenberg,%20H.&rft.date=2018-09&rft.volume=16&rft.issue=9&rft.spage=1732&rft.epage=1742&rft.pages=1732-1742&rft.issn=1538-7933&rft.eissn=1538-7836&rft_id=info:doi/10.1111/jth.14211&rft_dat=%3Cproquest_cross%3E2098964854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2098964854&rft_id=info:pmid/29935043&rfr_iscdi=true |