Bond Stiffness, not Chain Length, Dictates Polymer Infiltration into Nanopores

We study the effect of physical confinement on the capillary infiltration of polymers into cylindrical nanopores using molecular dynamics simulations. In particular, we probe whether the critical contact angle above which capillary rise infiltration ceases to occur changes for long chain polymers, p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-08
Hauptverfasser: Ring, David J, Riggleman, Robert A, Lee, Daeyeon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ring, David J
Riggleman, Robert A
Lee, Daeyeon
description We study the effect of physical confinement on the capillary infiltration of polymers into cylindrical nanopores using molecular dynamics simulations. In particular, we probe whether the critical contact angle above which capillary rise infiltration ceases to occur changes for long chain polymers, possibly due to loss of conformation entropy induced by chain confinement. Surprisingly, the critical contact angle does not strongly depend on the length of polymer chains and stays constant for large N. A free energy model is developed to show that the critical angle for infiltration depends strongly on the size of statistical segments rather than the total chain length, which we confirm by performing MD simulations of infiltration with semi-flexible polymers. These results could provide guidelines in manufacturing polymer nanostructures and nanocomposites using capillary rise infiltration.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2098882971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2098882971</sourcerecordid><originalsourceid>FETCH-proquest_journals_20988829713</originalsourceid><addsrcrecordid>eNqNysEKgkAQgOElCJLyHQa6KuiaqdesKAgJ6i5LrbliM7Y7Hnr7OvQAnf7D90-EJ5MkDvOVlDPhO9dFUSTXmUzTxBPVhvAOFzZNg9q5AJAYylYZhJPGB7cBbM2NFWsHZ-rfT23hiI3p2So2hGCQCSqFNJDVbiGmjeqd9n-di-V-dy0P4WDpNWrHdUejxS_VMiryPJdFFif_XR-VET4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098882971</pqid></control><display><type>article</type><title>Bond Stiffness, not Chain Length, Dictates Polymer Infiltration into Nanopores</title><source>Free E- Journals</source><creator>Ring, David J ; Riggleman, Robert A ; Lee, Daeyeon</creator><creatorcontrib>Ring, David J ; Riggleman, Robert A ; Lee, Daeyeon</creatorcontrib><description>We study the effect of physical confinement on the capillary infiltration of polymers into cylindrical nanopores using molecular dynamics simulations. In particular, we probe whether the critical contact angle above which capillary rise infiltration ceases to occur changes for long chain polymers, possibly due to loss of conformation entropy induced by chain confinement. Surprisingly, the critical contact angle does not strongly depend on the length of polymer chains and stays constant for large N. A free energy model is developed to show that the critical angle for infiltration depends strongly on the size of statistical segments rather than the total chain length, which we confirm by performing MD simulations of infiltration with semi-flexible polymers. These results could provide guidelines in manufacturing polymer nanostructures and nanocomposites using capillary rise infiltration.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chains (polymeric) ; Computer simulation ; Confinement ; Contact angle ; Critical angle ; Free energy ; Infiltration ; Molecular conformation ; Molecular dynamics ; Nanocomposites ; Polymers ; Porosity ; Stiffness</subject><ispartof>arXiv.org, 2018-08</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ring, David J</creatorcontrib><creatorcontrib>Riggleman, Robert A</creatorcontrib><creatorcontrib>Lee, Daeyeon</creatorcontrib><title>Bond Stiffness, not Chain Length, Dictates Polymer Infiltration into Nanopores</title><title>arXiv.org</title><description>We study the effect of physical confinement on the capillary infiltration of polymers into cylindrical nanopores using molecular dynamics simulations. In particular, we probe whether the critical contact angle above which capillary rise infiltration ceases to occur changes for long chain polymers, possibly due to loss of conformation entropy induced by chain confinement. Surprisingly, the critical contact angle does not strongly depend on the length of polymer chains and stays constant for large N. A free energy model is developed to show that the critical angle for infiltration depends strongly on the size of statistical segments rather than the total chain length, which we confirm by performing MD simulations of infiltration with semi-flexible polymers. These results could provide guidelines in manufacturing polymer nanostructures and nanocomposites using capillary rise infiltration.</description><subject>Chains (polymeric)</subject><subject>Computer simulation</subject><subject>Confinement</subject><subject>Contact angle</subject><subject>Critical angle</subject><subject>Free energy</subject><subject>Infiltration</subject><subject>Molecular conformation</subject><subject>Molecular dynamics</subject><subject>Nanocomposites</subject><subject>Polymers</subject><subject>Porosity</subject><subject>Stiffness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNysEKgkAQgOElCJLyHQa6KuiaqdesKAgJ6i5LrbliM7Y7Hnr7OvQAnf7D90-EJ5MkDvOVlDPhO9dFUSTXmUzTxBPVhvAOFzZNg9q5AJAYylYZhJPGB7cBbM2NFWsHZ-rfT23hiI3p2So2hGCQCSqFNJDVbiGmjeqd9n-di-V-dy0P4WDpNWrHdUejxS_VMiryPJdFFif_XR-VET4A</recordid><startdate>20180831</startdate><enddate>20180831</enddate><creator>Ring, David J</creator><creator>Riggleman, Robert A</creator><creator>Lee, Daeyeon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180831</creationdate><title>Bond Stiffness, not Chain Length, Dictates Polymer Infiltration into Nanopores</title><author>Ring, David J ; Riggleman, Robert A ; Lee, Daeyeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20988829713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chains (polymeric)</topic><topic>Computer simulation</topic><topic>Confinement</topic><topic>Contact angle</topic><topic>Critical angle</topic><topic>Free energy</topic><topic>Infiltration</topic><topic>Molecular conformation</topic><topic>Molecular dynamics</topic><topic>Nanocomposites</topic><topic>Polymers</topic><topic>Porosity</topic><topic>Stiffness</topic><toplevel>online_resources</toplevel><creatorcontrib>Ring, David J</creatorcontrib><creatorcontrib>Riggleman, Robert A</creatorcontrib><creatorcontrib>Lee, Daeyeon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ring, David J</au><au>Riggleman, Robert A</au><au>Lee, Daeyeon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bond Stiffness, not Chain Length, Dictates Polymer Infiltration into Nanopores</atitle><jtitle>arXiv.org</jtitle><date>2018-08-31</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We study the effect of physical confinement on the capillary infiltration of polymers into cylindrical nanopores using molecular dynamics simulations. In particular, we probe whether the critical contact angle above which capillary rise infiltration ceases to occur changes for long chain polymers, possibly due to loss of conformation entropy induced by chain confinement. Surprisingly, the critical contact angle does not strongly depend on the length of polymer chains and stays constant for large N. A free energy model is developed to show that the critical angle for infiltration depends strongly on the size of statistical segments rather than the total chain length, which we confirm by performing MD simulations of infiltration with semi-flexible polymers. These results could provide guidelines in manufacturing polymer nanostructures and nanocomposites using capillary rise infiltration.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2098882971
source Free E- Journals
subjects Chains (polymeric)
Computer simulation
Confinement
Contact angle
Critical angle
Free energy
Infiltration
Molecular conformation
Molecular dynamics
Nanocomposites
Polymers
Porosity
Stiffness
title Bond Stiffness, not Chain Length, Dictates Polymer Infiltration into Nanopores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A44%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bond%20Stiffness,%20not%20Chain%20Length,%20Dictates%20Polymer%20Infiltration%20into%20Nanopores&rft.jtitle=arXiv.org&rft.au=Ring,%20David%20J&rft.date=2018-08-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2098882971%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2098882971&rft_id=info:pmid/&rfr_iscdi=true