Single-Source Bottleneck Path Algorithm Faster than Sorting for Sparse Graphs

In a directed graph \(G=(V,E)\) with a capacity on every edge, a \emph{bottleneck path} (or \emph{widest path}) between two vertices is a path maximizing the minimum capacity of edges in the path. For the single-source all-destination version of this problem in directed graphs, the previous best alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-08
Hauptverfasser: Duan, Ran, Lyu, Kaifeng, Wu, Hongxun, Xie, Yuanhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Duan, Ran
Lyu, Kaifeng
Wu, Hongxun
Xie, Yuanhang
description In a directed graph \(G=(V,E)\) with a capacity on every edge, a \emph{bottleneck path} (or \emph{widest path}) between two vertices is a path maximizing the minimum capacity of edges in the path. For the single-source all-destination version of this problem in directed graphs, the previous best algorithm runs in \(O(m+n\log n)\) (\(m=|E|\) and \(n=|V|\)) time, by Dijkstra search with Fibonacci heap [Fredman and Tarjan 1987]. We improve this time bound to \(O(m\sqrt{\log n})\), thus it is the first algorithm which breaks the time bound of classic Fibonacci heap when \(m=o(n\sqrt{\log n})\). It is a Las-Vegas randomized approach. By contrast, the s-t bottleneck path has an algorithm with running time \(O(m\beta(m,n))\) [Chechik et al. 2016], where \(\beta(m,n)=\min\{k\geq 1: \log^{(k)}n\leq\frac{m}{n}\}\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2098881997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2098881997</sourcerecordid><originalsourceid>FETCH-proquest_journals_20988819973</originalsourceid><addsrcrecordid>eNqNjbEKwjAURYMgWLT_8MC5EBNr01HF6iIIcS-hpE1rTGry-v928AOc7nDO4S5IwjjfZWLP2IqkMQ6UUnYoWJ7zhNxl7zqrM-mn0Gg4eUSrnW5e8FBo4Gg7H3o0b6hURB0AjXIgfcA5g9YHkKMKUcM1qNHEDVm2ykad_nZNttXleb5lY_CfSUesh_nHzahmtBRC7Mqy4P9ZX3UZPbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098881997</pqid></control><display><type>article</type><title>Single-Source Bottleneck Path Algorithm Faster than Sorting for Sparse Graphs</title><source>Free E- Journals</source><creator>Duan, Ran ; Lyu, Kaifeng ; Wu, Hongxun ; Xie, Yuanhang</creator><creatorcontrib>Duan, Ran ; Lyu, Kaifeng ; Wu, Hongxun ; Xie, Yuanhang</creatorcontrib><description>In a directed graph \(G=(V,E)\) with a capacity on every edge, a \emph{bottleneck path} (or \emph{widest path}) between two vertices is a path maximizing the minimum capacity of edges in the path. For the single-source all-destination version of this problem in directed graphs, the previous best algorithm runs in \(O(m+n\log n)\) (\(m=|E|\) and \(n=|V|\)) time, by Dijkstra search with Fibonacci heap [Fredman and Tarjan 1987]. We improve this time bound to \(O(m\sqrt{\log n})\), thus it is the first algorithm which breaks the time bound of classic Fibonacci heap when \(m=o(n\sqrt{\log n})\). It is a Las-Vegas randomized approach. By contrast, the s-t bottleneck path has an algorithm with running time \(O(m\beta(m,n))\) [Chechik et al. 2016], where \(\beta(m,n)=\min\{k\geq 1: \log^{(k)}n\leq\frac{m}{n}\}\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Apexes ; Classification ; Graph theory ; Graphs ; Run time (computers) ; Sorting algorithms</subject><ispartof>arXiv.org, 2018-08</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Duan, Ran</creatorcontrib><creatorcontrib>Lyu, Kaifeng</creatorcontrib><creatorcontrib>Wu, Hongxun</creatorcontrib><creatorcontrib>Xie, Yuanhang</creatorcontrib><title>Single-Source Bottleneck Path Algorithm Faster than Sorting for Sparse Graphs</title><title>arXiv.org</title><description>In a directed graph \(G=(V,E)\) with a capacity on every edge, a \emph{bottleneck path} (or \emph{widest path}) between two vertices is a path maximizing the minimum capacity of edges in the path. For the single-source all-destination version of this problem in directed graphs, the previous best algorithm runs in \(O(m+n\log n)\) (\(m=|E|\) and \(n=|V|\)) time, by Dijkstra search with Fibonacci heap [Fredman and Tarjan 1987]. We improve this time bound to \(O(m\sqrt{\log n})\), thus it is the first algorithm which breaks the time bound of classic Fibonacci heap when \(m=o(n\sqrt{\log n})\). It is a Las-Vegas randomized approach. By contrast, the s-t bottleneck path has an algorithm with running time \(O(m\beta(m,n))\) [Chechik et al. 2016], where \(\beta(m,n)=\min\{k\geq 1: \log^{(k)}n\leq\frac{m}{n}\}\).</description><subject>Algorithms</subject><subject>Apexes</subject><subject>Classification</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Run time (computers)</subject><subject>Sorting algorithms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjbEKwjAURYMgWLT_8MC5EBNr01HF6iIIcS-hpE1rTGry-v928AOc7nDO4S5IwjjfZWLP2IqkMQ6UUnYoWJ7zhNxl7zqrM-mn0Gg4eUSrnW5e8FBo4Gg7H3o0b6hURB0AjXIgfcA5g9YHkKMKUcM1qNHEDVm2ykad_nZNttXleb5lY_CfSUesh_nHzahmtBRC7Mqy4P9ZX3UZPbs</recordid><startdate>20180831</startdate><enddate>20180831</enddate><creator>Duan, Ran</creator><creator>Lyu, Kaifeng</creator><creator>Wu, Hongxun</creator><creator>Xie, Yuanhang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180831</creationdate><title>Single-Source Bottleneck Path Algorithm Faster than Sorting for Sparse Graphs</title><author>Duan, Ran ; Lyu, Kaifeng ; Wu, Hongxun ; Xie, Yuanhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20988819973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>Classification</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Run time (computers)</topic><topic>Sorting algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Duan, Ran</creatorcontrib><creatorcontrib>Lyu, Kaifeng</creatorcontrib><creatorcontrib>Wu, Hongxun</creatorcontrib><creatorcontrib>Xie, Yuanhang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Ran</au><au>Lyu, Kaifeng</au><au>Wu, Hongxun</au><au>Xie, Yuanhang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Single-Source Bottleneck Path Algorithm Faster than Sorting for Sparse Graphs</atitle><jtitle>arXiv.org</jtitle><date>2018-08-31</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>In a directed graph \(G=(V,E)\) with a capacity on every edge, a \emph{bottleneck path} (or \emph{widest path}) between two vertices is a path maximizing the minimum capacity of edges in the path. For the single-source all-destination version of this problem in directed graphs, the previous best algorithm runs in \(O(m+n\log n)\) (\(m=|E|\) and \(n=|V|\)) time, by Dijkstra search with Fibonacci heap [Fredman and Tarjan 1987]. We improve this time bound to \(O(m\sqrt{\log n})\), thus it is the first algorithm which breaks the time bound of classic Fibonacci heap when \(m=o(n\sqrt{\log n})\). It is a Las-Vegas randomized approach. By contrast, the s-t bottleneck path has an algorithm with running time \(O(m\beta(m,n))\) [Chechik et al. 2016], where \(\beta(m,n)=\min\{k\geq 1: \log^{(k)}n\leq\frac{m}{n}\}\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2098881997
source Free E- Journals
subjects Algorithms
Apexes
Classification
Graph theory
Graphs
Run time (computers)
Sorting algorithms
title Single-Source Bottleneck Path Algorithm Faster than Sorting for Sparse Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Single-Source%20Bottleneck%20Path%20Algorithm%20Faster%20than%20Sorting%20for%20Sparse%20Graphs&rft.jtitle=arXiv.org&rft.au=Duan,%20Ran&rft.date=2018-08-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2098881997%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2098881997&rft_id=info:pmid/&rfr_iscdi=true