The most stable adsorption geometries of two chiral modifiers on Pt(111)

•A detailed RAIRS study of the adsorption geometries of two chiral modifiers on Pt(111).•The favoured geometry of (R)-NEA on Pt(111) combines naphthyl-Pt and amine-Pt bonding.•(R)-8-Me-NEA possibly transforms to (R)-8-CH2-NEA on Pt(111). The molecular description of chirality transfer on chirally mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface science 2018-10, Vol.676, p.17-22
Hauptverfasser: Zeng, Yang, Masini, Federico, Rasmussen, Anton M.H., Groves, Michael N., Albert, Vincent, Boukouvalas, John, McBreen, Peter H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue
container_start_page 17
container_title Surface science
container_volume 676
creator Zeng, Yang
Masini, Federico
Rasmussen, Anton M.H.
Groves, Michael N.
Albert, Vincent
Boukouvalas, John
McBreen, Peter H.
description •A detailed RAIRS study of the adsorption geometries of two chiral modifiers on Pt(111).•The favoured geometry of (R)-NEA on Pt(111) combines naphthyl-Pt and amine-Pt bonding.•(R)-8-Me-NEA possibly transforms to (R)-8-CH2-NEA on Pt(111). The molecular description of chirality transfer on chirally modified metal surfaces is unclear due to the complexity of the systems and the weak energetic biases favoring specific enantioselective pathways. In order to move to an enhanced level of molecular understanding it is critical to define the chemisorption geometries of the modifiers responsible for enantiodifferentiation. Model surface science studies of chiral molecules on single crystals provide an indirect method to probe catalytic chirality transfer molecular mechanisms. Apart from the great difference between ultrahigh vacuum (UHV) and reaction conditions, the extent to which such studies can inform the interpretation of data obtained under reaction conditions depends on the degree to which the model systems are correctly defined. The same holds true for any comparison of UHV surface spectroscopy data to spectroscopic measurements made at the catalyst-solution interface under either in-situ or operando conditions. We present detailed reflection absorption infrared spectroscopy (RAIRS) data on (R)-1-(1-naphthyl)ethylamine, (R)-NEA, and its simple derivative, (R)-1-(8-methyl-1-naphthyl)ethylamine, on Pt(111). Various conflicting proposals for the structure of NEA and analogous modifiers on Pt catalyst particles and extended Pt surfaces are found in the literature. Here, we find that below high sub-monolayer coverages on Pt(111), (R)-NEA adopts a chemisorption geometry where the entire naphthyl group is π-bonded to the surface and the amine group forms a dative bond to the surface. The same general adsorption geometry is found for the methyl-substituted derivative. The study provides reference spectra for these chiral modifiers and confirms the molecular structures described in our previous studies of diastereomeric complexes formed by the (R)-NEA/Pt(111) system. [Display omitted]
doi_str_mv 10.1016/j.susc.2018.02.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2098781807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039602817309160</els_id><sourcerecordid>2098781807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-424b614f7ae6293731be5c7eee9f931ac8e7371919ee09be0f5ed40fbca10073</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAix52nWQ_koAXKX5BQQ-9h93sxGZpm5qkiv_e1Hp2LgPD-8688xByyaBkwNrbsYy7aEoOTJbASwB5RCZMClVw0chjMgGoVNECl6fkLMYRctWqmZDnxRLp2sdEY-r6FdJuiD5sk_Mb-o5-jSk4jNRbmr48NUsXulXWD846DHm-oW_pmjF2c05ObLeKePHXp2Tx-LCYPRfz16eX2f28MJWqU1Hzum9ZbUWHLVeVqFiPjRGIqKyqWGckikowxRQiqB7BNjjUYHvTMQBRTcnVYe02-I8dxqRHvwubfFFzUFJIJn9V_KAywccY0OptcOsufGsGeg9Mj3oPTO-BaeA6A8umu4MJc_zP_J6OxuHG4OACmqQH7_6z_wBs8nNy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098781807</pqid></control><display><type>article</type><title>The most stable adsorption geometries of two chiral modifiers on Pt(111)</title><source>Elsevier ScienceDirect Journals</source><creator>Zeng, Yang ; Masini, Federico ; Rasmussen, Anton M.H. ; Groves, Michael N. ; Albert, Vincent ; Boukouvalas, John ; McBreen, Peter H.</creator><creatorcontrib>Zeng, Yang ; Masini, Federico ; Rasmussen, Anton M.H. ; Groves, Michael N. ; Albert, Vincent ; Boukouvalas, John ; McBreen, Peter H.</creatorcontrib><description>•A detailed RAIRS study of the adsorption geometries of two chiral modifiers on Pt(111).•The favoured geometry of (R)-NEA on Pt(111) combines naphthyl-Pt and amine-Pt bonding.•(R)-8-Me-NEA possibly transforms to (R)-8-CH2-NEA on Pt(111). The molecular description of chirality transfer on chirally modified metal surfaces is unclear due to the complexity of the systems and the weak energetic biases favoring specific enantioselective pathways. In order to move to an enhanced level of molecular understanding it is critical to define the chemisorption geometries of the modifiers responsible for enantiodifferentiation. Model surface science studies of chiral molecules on single crystals provide an indirect method to probe catalytic chirality transfer molecular mechanisms. Apart from the great difference between ultrahigh vacuum (UHV) and reaction conditions, the extent to which such studies can inform the interpretation of data obtained under reaction conditions depends on the degree to which the model systems are correctly defined. The same holds true for any comparison of UHV surface spectroscopy data to spectroscopic measurements made at the catalyst-solution interface under either in-situ or operando conditions. We present detailed reflection absorption infrared spectroscopy (RAIRS) data on (R)-1-(1-naphthyl)ethylamine, (R)-NEA, and its simple derivative, (R)-1-(8-methyl-1-naphthyl)ethylamine, on Pt(111). Various conflicting proposals for the structure of NEA and analogous modifiers on Pt catalyst particles and extended Pt surfaces are found in the literature. Here, we find that below high sub-monolayer coverages on Pt(111), (R)-NEA adopts a chemisorption geometry where the entire naphthyl group is π-bonded to the surface and the amine group forms a dative bond to the surface. The same general adsorption geometry is found for the methyl-substituted derivative. The study provides reference spectra for these chiral modifiers and confirms the molecular structures described in our previous studies of diastereomeric complexes formed by the (R)-NEA/Pt(111) system. [Display omitted]</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2018.02.008</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorption ; Asymmetry ; Catalysis ; Catalysts ; Chemisorption ; Chiral surfaces ; Chirality ; Chirally modified surfaces ; Enantiomers ; Enantioselective hydrogenation ; Geometry ; Heterogeneous asymmetric catalysis ; Hydrogenation ; Infrared reflection ; Metal surfaces ; Organic chemistry ; RAIRS ; Single crystals ; Surface chemistry ; Ultrahigh vacuum</subject><ispartof>Surface science, 2018-10, Vol.676, p.17-22</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-424b614f7ae6293731be5c7eee9f931ac8e7371919ee09be0f5ed40fbca10073</citedby><cites>FETCH-LOGICAL-c394t-424b614f7ae6293731be5c7eee9f931ac8e7371919ee09be0f5ed40fbca10073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0039602817309160$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Zeng, Yang</creatorcontrib><creatorcontrib>Masini, Federico</creatorcontrib><creatorcontrib>Rasmussen, Anton M.H.</creatorcontrib><creatorcontrib>Groves, Michael N.</creatorcontrib><creatorcontrib>Albert, Vincent</creatorcontrib><creatorcontrib>Boukouvalas, John</creatorcontrib><creatorcontrib>McBreen, Peter H.</creatorcontrib><title>The most stable adsorption geometries of two chiral modifiers on Pt(111)</title><title>Surface science</title><description>•A detailed RAIRS study of the adsorption geometries of two chiral modifiers on Pt(111).•The favoured geometry of (R)-NEA on Pt(111) combines naphthyl-Pt and amine-Pt bonding.•(R)-8-Me-NEA possibly transforms to (R)-8-CH2-NEA on Pt(111). The molecular description of chirality transfer on chirally modified metal surfaces is unclear due to the complexity of the systems and the weak energetic biases favoring specific enantioselective pathways. In order to move to an enhanced level of molecular understanding it is critical to define the chemisorption geometries of the modifiers responsible for enantiodifferentiation. Model surface science studies of chiral molecules on single crystals provide an indirect method to probe catalytic chirality transfer molecular mechanisms. Apart from the great difference between ultrahigh vacuum (UHV) and reaction conditions, the extent to which such studies can inform the interpretation of data obtained under reaction conditions depends on the degree to which the model systems are correctly defined. The same holds true for any comparison of UHV surface spectroscopy data to spectroscopic measurements made at the catalyst-solution interface under either in-situ or operando conditions. We present detailed reflection absorption infrared spectroscopy (RAIRS) data on (R)-1-(1-naphthyl)ethylamine, (R)-NEA, and its simple derivative, (R)-1-(8-methyl-1-naphthyl)ethylamine, on Pt(111). Various conflicting proposals for the structure of NEA and analogous modifiers on Pt catalyst particles and extended Pt surfaces are found in the literature. Here, we find that below high sub-monolayer coverages on Pt(111), (R)-NEA adopts a chemisorption geometry where the entire naphthyl group is π-bonded to the surface and the amine group forms a dative bond to the surface. The same general adsorption geometry is found for the methyl-substituted derivative. The study provides reference spectra for these chiral modifiers and confirms the molecular structures described in our previous studies of diastereomeric complexes formed by the (R)-NEA/Pt(111) system. [Display omitted]</description><subject>Adsorption</subject><subject>Asymmetry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemisorption</subject><subject>Chiral surfaces</subject><subject>Chirality</subject><subject>Chirally modified surfaces</subject><subject>Enantiomers</subject><subject>Enantioselective hydrogenation</subject><subject>Geometry</subject><subject>Heterogeneous asymmetric catalysis</subject><subject>Hydrogenation</subject><subject>Infrared reflection</subject><subject>Metal surfaces</subject><subject>Organic chemistry</subject><subject>RAIRS</subject><subject>Single crystals</subject><subject>Surface chemistry</subject><subject>Ultrahigh vacuum</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAix52nWQ_koAXKX5BQQ-9h93sxGZpm5qkiv_e1Hp2LgPD-8688xByyaBkwNrbsYy7aEoOTJbASwB5RCZMClVw0chjMgGoVNECl6fkLMYRctWqmZDnxRLp2sdEY-r6FdJuiD5sk_Mb-o5-jSk4jNRbmr48NUsXulXWD846DHm-oW_pmjF2c05ObLeKePHXp2Tx-LCYPRfz16eX2f28MJWqU1Hzum9ZbUWHLVeVqFiPjRGIqKyqWGckikowxRQiqB7BNjjUYHvTMQBRTcnVYe02-I8dxqRHvwubfFFzUFJIJn9V_KAywccY0OptcOsufGsGeg9Mj3oPTO-BaeA6A8umu4MJc_zP_J6OxuHG4OACmqQH7_6z_wBs8nNy</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Zeng, Yang</creator><creator>Masini, Federico</creator><creator>Rasmussen, Anton M.H.</creator><creator>Groves, Michael N.</creator><creator>Albert, Vincent</creator><creator>Boukouvalas, John</creator><creator>McBreen, Peter H.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201810</creationdate><title>The most stable adsorption geometries of two chiral modifiers on Pt(111)</title><author>Zeng, Yang ; Masini, Federico ; Rasmussen, Anton M.H. ; Groves, Michael N. ; Albert, Vincent ; Boukouvalas, John ; McBreen, Peter H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-424b614f7ae6293731be5c7eee9f931ac8e7371919ee09be0f5ed40fbca10073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adsorption</topic><topic>Asymmetry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemisorption</topic><topic>Chiral surfaces</topic><topic>Chirality</topic><topic>Chirally modified surfaces</topic><topic>Enantiomers</topic><topic>Enantioselective hydrogenation</topic><topic>Geometry</topic><topic>Heterogeneous asymmetric catalysis</topic><topic>Hydrogenation</topic><topic>Infrared reflection</topic><topic>Metal surfaces</topic><topic>Organic chemistry</topic><topic>RAIRS</topic><topic>Single crystals</topic><topic>Surface chemistry</topic><topic>Ultrahigh vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Yang</creatorcontrib><creatorcontrib>Masini, Federico</creatorcontrib><creatorcontrib>Rasmussen, Anton M.H.</creatorcontrib><creatorcontrib>Groves, Michael N.</creatorcontrib><creatorcontrib>Albert, Vincent</creatorcontrib><creatorcontrib>Boukouvalas, John</creatorcontrib><creatorcontrib>McBreen, Peter H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Yang</au><au>Masini, Federico</au><au>Rasmussen, Anton M.H.</au><au>Groves, Michael N.</au><au>Albert, Vincent</au><au>Boukouvalas, John</au><au>McBreen, Peter H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The most stable adsorption geometries of two chiral modifiers on Pt(111)</atitle><jtitle>Surface science</jtitle><date>2018-10</date><risdate>2018</risdate><volume>676</volume><spage>17</spage><epage>22</epage><pages>17-22</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><abstract>•A detailed RAIRS study of the adsorption geometries of two chiral modifiers on Pt(111).•The favoured geometry of (R)-NEA on Pt(111) combines naphthyl-Pt and amine-Pt bonding.•(R)-8-Me-NEA possibly transforms to (R)-8-CH2-NEA on Pt(111). The molecular description of chirality transfer on chirally modified metal surfaces is unclear due to the complexity of the systems and the weak energetic biases favoring specific enantioselective pathways. In order to move to an enhanced level of molecular understanding it is critical to define the chemisorption geometries of the modifiers responsible for enantiodifferentiation. Model surface science studies of chiral molecules on single crystals provide an indirect method to probe catalytic chirality transfer molecular mechanisms. Apart from the great difference between ultrahigh vacuum (UHV) and reaction conditions, the extent to which such studies can inform the interpretation of data obtained under reaction conditions depends on the degree to which the model systems are correctly defined. The same holds true for any comparison of UHV surface spectroscopy data to spectroscopic measurements made at the catalyst-solution interface under either in-situ or operando conditions. We present detailed reflection absorption infrared spectroscopy (RAIRS) data on (R)-1-(1-naphthyl)ethylamine, (R)-NEA, and its simple derivative, (R)-1-(8-methyl-1-naphthyl)ethylamine, on Pt(111). Various conflicting proposals for the structure of NEA and analogous modifiers on Pt catalyst particles and extended Pt surfaces are found in the literature. Here, we find that below high sub-monolayer coverages on Pt(111), (R)-NEA adopts a chemisorption geometry where the entire naphthyl group is π-bonded to the surface and the amine group forms a dative bond to the surface. The same general adsorption geometry is found for the methyl-substituted derivative. The study provides reference spectra for these chiral modifiers and confirms the molecular structures described in our previous studies of diastereomeric complexes formed by the (R)-NEA/Pt(111) system. [Display omitted]</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2018.02.008</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-6028
ispartof Surface science, 2018-10, Vol.676, p.17-22
issn 0039-6028
1879-2758
language eng
recordid cdi_proquest_journals_2098781807
source Elsevier ScienceDirect Journals
subjects Adsorption
Asymmetry
Catalysis
Catalysts
Chemisorption
Chiral surfaces
Chirality
Chirally modified surfaces
Enantiomers
Enantioselective hydrogenation
Geometry
Heterogeneous asymmetric catalysis
Hydrogenation
Infrared reflection
Metal surfaces
Organic chemistry
RAIRS
Single crystals
Surface chemistry
Ultrahigh vacuum
title The most stable adsorption geometries of two chiral modifiers on Pt(111)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20most%20stable%20adsorption%20geometries%20of%20two%20chiral%20modifiers%20on%20Pt(111)&rft.jtitle=Surface%20science&rft.au=Zeng,%20Yang&rft.date=2018-10&rft.volume=676&rft.spage=17&rft.epage=22&rft.pages=17-22&rft.issn=0039-6028&rft.eissn=1879-2758&rft_id=info:doi/10.1016/j.susc.2018.02.008&rft_dat=%3Cproquest_cross%3E2098781807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2098781807&rft_id=info:pmid/&rft_els_id=S0039602817309160&rfr_iscdi=true