Self‐Adhesive and Ultra‐Conformable, Sub‐300 nm Dry Thin‐Film Electrodes for Surface Monitoring of Biopotentials

Accurate and unobtrusive monitoring of surface biopotentials is of paramount importance for physiological studies and wearable healthcare applications. Thin, light‐weight, and conformal bioelectrodes are highly desirable for biopotential monitoring. This report demonstrates the fabrication of sub‐30...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2018-09, Vol.28 (36), p.n/a
Hauptverfasser: Nawrocki, Robert A., Jin, Hanbit, Lee, Sunghoon, Yokota, Tomoyuki, Sekino, Masaki, Someya, Takao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page
container_title Advanced functional materials
container_volume 28
creator Nawrocki, Robert A.
Jin, Hanbit
Lee, Sunghoon
Yokota, Tomoyuki
Sekino, Masaki
Someya, Takao
description Accurate and unobtrusive monitoring of surface biopotentials is of paramount importance for physiological studies and wearable healthcare applications. Thin, light‐weight, and conformal bioelectrodes are highly desirable for biopotential monitoring. This report demonstrates the fabrication of sub‐300 nm thin, dry electrodes that are self‐adhesive and conformable to complex 3D biological surfaces and thus capable of excellent quality of biopotential (surface electromyogram and surface electrocardiogram) recordings. Measurements reveal single‐day stability of up to 10 h. In addition, the bending stiffness of the sensor is calculated to be ≈0.33 pN m2, which is comparable to stratum corneum, the uppermost layer of human skin, and this stiffness is over two orders of magnitude lower than the bending stiffness of a 3.0 µm thin sensor. Laminated on a prestretched elastomer, when relaxed, the sensor forms wrinkles with a period and amplitude equal to 17 and 4 µm, respectively, which these values agree with theoretical calculations. Finally, with skin vibrations of up to ≈15 µm, the sensor exhibits motion artifact‐less monitoring of surface biopotentials, in contrast to a wet adhesive electrode that shows much greater influence. Sub‐300 nm dry, thin film electrodes are shown to be self‐adhesive and ultra‐conformal to complex 3D structures, including human skin. They exhibit excellent biopotential (surface electromyogram/surface electrocardiogram) recording capabilities, and long‐term stability, while being immune to motion artifacts. Due to their thinness, their bending stiffness is comparable to the stratum corneum, the outer layer of human skin.
doi_str_mv 10.1002/adfm.201803279
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2098770132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2098770132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4209-8fd242f206beacfde1e4af8ae700841afd760c233b3c81af9bc13ae6b9feddc23</originalsourceid><addsrcrecordid>eNqFUE1PAjEU3BhNRPTquYlXwdd2sx9HBFETiAcg8bbptq9Ssttid1G5-RP8jf4SSzB49DTvzZuZl0wUXVLoUwB2I5Su-wxoBpyl-VHUoQlNehxYdnyY6fNpdNY0KwCapjzuRB8zrPT359dALbExb0iEVWRRtV4Ecuisdr4WZYXXZLYpA8UBiK3JyG_JfGlsYMamqsldhbL1TmFDgiNovRYSydRZ0zpv7Atxmtwat3Yt2taIqjmPTnQAvPjFbrQY382HD73J0_3jcDDpyZhB3su0YjHTDJIShdQKKcZCZwJTgCymQqs0Ack4L7nMwpqXknKBSZlrVCocutHVPnft3esGm7ZYuY234WUR8rM0Bcp3qv5eJb1rGo-6WHtTC78tKBS7dotdu8Wh3WDI94Z3U-H2H3UxGI2nf94fMzuD1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098770132</pqid></control><display><type>article</type><title>Self‐Adhesive and Ultra‐Conformable, Sub‐300 nm Dry Thin‐Film Electrodes for Surface Monitoring of Biopotentials</title><source>Wiley Online Library</source><creator>Nawrocki, Robert A. ; Jin, Hanbit ; Lee, Sunghoon ; Yokota, Tomoyuki ; Sekino, Masaki ; Someya, Takao</creator><creatorcontrib>Nawrocki, Robert A. ; Jin, Hanbit ; Lee, Sunghoon ; Yokota, Tomoyuki ; Sekino, Masaki ; Someya, Takao</creatorcontrib><description>Accurate and unobtrusive monitoring of surface biopotentials is of paramount importance for physiological studies and wearable healthcare applications. Thin, light‐weight, and conformal bioelectrodes are highly desirable for biopotential monitoring. This report demonstrates the fabrication of sub‐300 nm thin, dry electrodes that are self‐adhesive and conformable to complex 3D biological surfaces and thus capable of excellent quality of biopotential (surface electromyogram and surface electrocardiogram) recordings. Measurements reveal single‐day stability of up to 10 h. In addition, the bending stiffness of the sensor is calculated to be ≈0.33 pN m2, which is comparable to stratum corneum, the uppermost layer of human skin, and this stiffness is over two orders of magnitude lower than the bending stiffness of a 3.0 µm thin sensor. Laminated on a prestretched elastomer, when relaxed, the sensor forms wrinkles with a period and amplitude equal to 17 and 4 µm, respectively, which these values agree with theoretical calculations. Finally, with skin vibrations of up to ≈15 µm, the sensor exhibits motion artifact‐less monitoring of surface biopotentials, in contrast to a wet adhesive electrode that shows much greater influence. Sub‐300 nm dry, thin film electrodes are shown to be self‐adhesive and ultra‐conformal to complex 3D structures, including human skin. They exhibit excellent biopotential (surface electromyogram/surface electrocardiogram) recording capabilities, and long‐term stability, while being immune to motion artifacts. Due to their thinness, their bending stiffness is comparable to the stratum corneum, the outer layer of human skin.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201803279</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Adhesives ; bioelectronics ; biopotentials ; Elastomers ; Electrodes ; EMG/ECG ; e‐skin ; Materials science ; Mathematical analysis ; Monitoring ; Sensors ; Stiffness ; ultraflexible electronics ; Weight reduction</subject><ispartof>Advanced functional materials, 2018-09, Vol.28 (36), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4209-8fd242f206beacfde1e4af8ae700841afd760c233b3c81af9bc13ae6b9feddc23</citedby><cites>FETCH-LOGICAL-c4209-8fd242f206beacfde1e4af8ae700841afd760c233b3c81af9bc13ae6b9feddc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201803279$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201803279$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Nawrocki, Robert A.</creatorcontrib><creatorcontrib>Jin, Hanbit</creatorcontrib><creatorcontrib>Lee, Sunghoon</creatorcontrib><creatorcontrib>Yokota, Tomoyuki</creatorcontrib><creatorcontrib>Sekino, Masaki</creatorcontrib><creatorcontrib>Someya, Takao</creatorcontrib><title>Self‐Adhesive and Ultra‐Conformable, Sub‐300 nm Dry Thin‐Film Electrodes for Surface Monitoring of Biopotentials</title><title>Advanced functional materials</title><description>Accurate and unobtrusive monitoring of surface biopotentials is of paramount importance for physiological studies and wearable healthcare applications. Thin, light‐weight, and conformal bioelectrodes are highly desirable for biopotential monitoring. This report demonstrates the fabrication of sub‐300 nm thin, dry electrodes that are self‐adhesive and conformable to complex 3D biological surfaces and thus capable of excellent quality of biopotential (surface electromyogram and surface electrocardiogram) recordings. Measurements reveal single‐day stability of up to 10 h. In addition, the bending stiffness of the sensor is calculated to be ≈0.33 pN m2, which is comparable to stratum corneum, the uppermost layer of human skin, and this stiffness is over two orders of magnitude lower than the bending stiffness of a 3.0 µm thin sensor. Laminated on a prestretched elastomer, when relaxed, the sensor forms wrinkles with a period and amplitude equal to 17 and 4 µm, respectively, which these values agree with theoretical calculations. Finally, with skin vibrations of up to ≈15 µm, the sensor exhibits motion artifact‐less monitoring of surface biopotentials, in contrast to a wet adhesive electrode that shows much greater influence. Sub‐300 nm dry, thin film electrodes are shown to be self‐adhesive and ultra‐conformal to complex 3D structures, including human skin. They exhibit excellent biopotential (surface electromyogram/surface electrocardiogram) recording capabilities, and long‐term stability, while being immune to motion artifacts. Due to their thinness, their bending stiffness is comparable to the stratum corneum, the outer layer of human skin.</description><subject>Adhesives</subject><subject>bioelectronics</subject><subject>biopotentials</subject><subject>Elastomers</subject><subject>Electrodes</subject><subject>EMG/ECG</subject><subject>e‐skin</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Monitoring</subject><subject>Sensors</subject><subject>Stiffness</subject><subject>ultraflexible electronics</subject><subject>Weight reduction</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUE1PAjEU3BhNRPTquYlXwdd2sx9HBFETiAcg8bbptq9Ssttid1G5-RP8jf4SSzB49DTvzZuZl0wUXVLoUwB2I5Su-wxoBpyl-VHUoQlNehxYdnyY6fNpdNY0KwCapjzuRB8zrPT359dALbExb0iEVWRRtV4Ecuisdr4WZYXXZLYpA8UBiK3JyG_JfGlsYMamqsldhbL1TmFDgiNovRYSydRZ0zpv7Atxmtwat3Yt2taIqjmPTnQAvPjFbrQY382HD73J0_3jcDDpyZhB3su0YjHTDJIShdQKKcZCZwJTgCymQqs0Ack4L7nMwpqXknKBSZlrVCocutHVPnft3esGm7ZYuY234WUR8rM0Bcp3qv5eJb1rGo-6WHtTC78tKBS7dotdu8Wh3WDI94Z3U-H2H3UxGI2nf94fMzuD1A</recordid><startdate>20180905</startdate><enddate>20180905</enddate><creator>Nawrocki, Robert A.</creator><creator>Jin, Hanbit</creator><creator>Lee, Sunghoon</creator><creator>Yokota, Tomoyuki</creator><creator>Sekino, Masaki</creator><creator>Someya, Takao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180905</creationdate><title>Self‐Adhesive and Ultra‐Conformable, Sub‐300 nm Dry Thin‐Film Electrodes for Surface Monitoring of Biopotentials</title><author>Nawrocki, Robert A. ; Jin, Hanbit ; Lee, Sunghoon ; Yokota, Tomoyuki ; Sekino, Masaki ; Someya, Takao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4209-8fd242f206beacfde1e4af8ae700841afd760c233b3c81af9bc13ae6b9feddc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adhesives</topic><topic>bioelectronics</topic><topic>biopotentials</topic><topic>Elastomers</topic><topic>Electrodes</topic><topic>EMG/ECG</topic><topic>e‐skin</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Monitoring</topic><topic>Sensors</topic><topic>Stiffness</topic><topic>ultraflexible electronics</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nawrocki, Robert A.</creatorcontrib><creatorcontrib>Jin, Hanbit</creatorcontrib><creatorcontrib>Lee, Sunghoon</creatorcontrib><creatorcontrib>Yokota, Tomoyuki</creatorcontrib><creatorcontrib>Sekino, Masaki</creatorcontrib><creatorcontrib>Someya, Takao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nawrocki, Robert A.</au><au>Jin, Hanbit</au><au>Lee, Sunghoon</au><au>Yokota, Tomoyuki</au><au>Sekino, Masaki</au><au>Someya, Takao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Adhesive and Ultra‐Conformable, Sub‐300 nm Dry Thin‐Film Electrodes for Surface Monitoring of Biopotentials</atitle><jtitle>Advanced functional materials</jtitle><date>2018-09-05</date><risdate>2018</risdate><volume>28</volume><issue>36</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Accurate and unobtrusive monitoring of surface biopotentials is of paramount importance for physiological studies and wearable healthcare applications. Thin, light‐weight, and conformal bioelectrodes are highly desirable for biopotential monitoring. This report demonstrates the fabrication of sub‐300 nm thin, dry electrodes that are self‐adhesive and conformable to complex 3D biological surfaces and thus capable of excellent quality of biopotential (surface electromyogram and surface electrocardiogram) recordings. Measurements reveal single‐day stability of up to 10 h. In addition, the bending stiffness of the sensor is calculated to be ≈0.33 pN m2, which is comparable to stratum corneum, the uppermost layer of human skin, and this stiffness is over two orders of magnitude lower than the bending stiffness of a 3.0 µm thin sensor. Laminated on a prestretched elastomer, when relaxed, the sensor forms wrinkles with a period and amplitude equal to 17 and 4 µm, respectively, which these values agree with theoretical calculations. Finally, with skin vibrations of up to ≈15 µm, the sensor exhibits motion artifact‐less monitoring of surface biopotentials, in contrast to a wet adhesive electrode that shows much greater influence. Sub‐300 nm dry, thin film electrodes are shown to be self‐adhesive and ultra‐conformal to complex 3D structures, including human skin. They exhibit excellent biopotential (surface electromyogram/surface electrocardiogram) recording capabilities, and long‐term stability, while being immune to motion artifacts. Due to their thinness, their bending stiffness is comparable to the stratum corneum, the outer layer of human skin.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201803279</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2018-09, Vol.28 (36), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2098770132
source Wiley Online Library
subjects Adhesives
bioelectronics
biopotentials
Elastomers
Electrodes
EMG/ECG
e‐skin
Materials science
Mathematical analysis
Monitoring
Sensors
Stiffness
ultraflexible electronics
Weight reduction
title Self‐Adhesive and Ultra‐Conformable, Sub‐300 nm Dry Thin‐Film Electrodes for Surface Monitoring of Biopotentials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T16%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Adhesive%20and%20Ultra%E2%80%90Conformable,%20Sub%E2%80%90300%20nm%20Dry%20Thin%E2%80%90Film%20Electrodes%20for%20Surface%20Monitoring%20of%20Biopotentials&rft.jtitle=Advanced%20functional%20materials&rft.au=Nawrocki,%20Robert%20A.&rft.date=2018-09-05&rft.volume=28&rft.issue=36&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201803279&rft_dat=%3Cproquest_cross%3E2098770132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2098770132&rft_id=info:pmid/&rfr_iscdi=true