Bias adjustment of satellite-based precipitation estimation using artificial neural networks-cloud classification system over Saudi Arabia
Precipitation is a key input variable for hydrological and climate studies. Rain gauges can provide reliable precipitation measurements at a point of observations. However, the uncertainty of rain measurements increases when a rain gauge network is sparse. Satellite-based precipitation estimations S...
Gespeichert in:
Veröffentlicht in: | Arabian journal of geosciences 2018-09, Vol.11 (17), p.1-17, Article 508 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 17 |
container_start_page | 1 |
container_title | Arabian journal of geosciences |
container_volume | 11 |
creator | Alharbi, Raied Hsu, Kuolin Sorooshian, Soroosh |
description | Precipitation is a key input variable for hydrological and climate studies. Rain gauges can provide reliable precipitation measurements at a point of observations. However, the uncertainty of rain measurements increases when a rain gauge network is sparse. Satellite-based precipitation estimations SPEs appear to be an alternative source of measurements for regions with limited rain gauges. However, the systematic bias from satellite precipitation estimation should be estimated and adjusted. In this study, a method of removing the bias from the precipitation estimation from remotely sensed information using artificial neural networks-cloud classification system (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping of gauge and satellite measurements over several climate zones as well as inverse-weighted distance for the interpolation of gauge measurements. Seven years (2010–2016) of daily precipitation estimation from PERSIANN-CCS was used to test and adjust the bias of estimation over Saudi Arabia. The first 6 years (2010–2015) are used for calibration, while 1 year (2016) is used for validation. The results show that the mean yearly bias is reduced by 90%, and the yearly root mean square error is reduced by 68% during the validation year. The experimental results confirm that the proposed method can effectively adjust the bias of satellite-based precipitation estimations. |
doi_str_mv | 10.1007/s12517-018-3860-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2098461341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2098461341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5f9ec41f2dcffe78cbbd6563aa6ea36c9c6f232f352d0e19bdb0c493d06a8ab93</originalsourceid><addsrcrecordid>eNp1kL1OxDAQhCMEEsfBA9BZojbYceI4JZz4k5AogNra-Af5yCXB64B4BZ6aHEFQUe0U881qJsuOOTvljFVnyPOSV5RxRYWSjBY72YIrKWlVCrX7qznfzw4Q14xJxSq1yD4vAiABux4xbVyXSO8JQnJtG5KjDaCzZIjOhCEkSKHviMMUNrMcMXTPBGIKPpgALencGL9Peu_jC1LT9qMlpgXErWWm8AOT25D-zUXyAKMN5DxCE-Aw2_PQojv6ucvs6erycXVD7-6vb1fnd9SIsk609LUzBfe5Nd67SpmmsbKUAkA6ENLURvpc5F6UuWWO141tmClqYZkEBU0tltnJnDvE_nWc6uh1P8ZueqlzVqtCclHwycVnl4k9YnReD3HqHT80Z3o7uZ4n19Pkeju5LiYmnxmcvN2zi3_J_0Nf46OI6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098461341</pqid></control><display><type>article</type><title>Bias adjustment of satellite-based precipitation estimation using artificial neural networks-cloud classification system over Saudi Arabia</title><source>SpringerLink Journals</source><creator>Alharbi, Raied ; Hsu, Kuolin ; Sorooshian, Soroosh</creator><creatorcontrib>Alharbi, Raied ; Hsu, Kuolin ; Sorooshian, Soroosh</creatorcontrib><description>Precipitation is a key input variable for hydrological and climate studies. Rain gauges can provide reliable precipitation measurements at a point of observations. However, the uncertainty of rain measurements increases when a rain gauge network is sparse. Satellite-based precipitation estimations SPEs appear to be an alternative source of measurements for regions with limited rain gauges. However, the systematic bias from satellite precipitation estimation should be estimated and adjusted. In this study, a method of removing the bias from the precipitation estimation from remotely sensed information using artificial neural networks-cloud classification system (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping of gauge and satellite measurements over several climate zones as well as inverse-weighted distance for the interpolation of gauge measurements. Seven years (2010–2016) of daily precipitation estimation from PERSIANN-CCS was used to test and adjust the bias of estimation over Saudi Arabia. The first 6 years (2010–2015) are used for calibration, while 1 year (2016) is used for validation. The results show that the mean yearly bias is reduced by 90%, and the yearly root mean square error is reduced by 68% during the validation year. The experimental results confirm that the proposed method can effectively adjust the bias of satellite-based precipitation estimations.</description><identifier>ISSN: 1866-7511</identifier><identifier>EISSN: 1866-7538</identifier><identifier>DOI: 10.1007/s12517-018-3860-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial neural networks ; Atmospheric precipitations ; Bias ; Calibration ; Classification ; Climate ; Climate studies ; Earth and Environmental Science ; Earth science ; Earth Sciences ; Gauges ; Hydrology ; Interpolation ; Methods ; Neural networks ; Original Paper ; Precipitation ; Rain ; Rain gauges ; Rainfall ; Remote sensing ; Satellites</subject><ispartof>Arabian journal of geosciences, 2018-09, Vol.11 (17), p.1-17, Article 508</ispartof><rights>Saudi Society for Geosciences 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5f9ec41f2dcffe78cbbd6563aa6ea36c9c6f232f352d0e19bdb0c493d06a8ab93</citedby><cites>FETCH-LOGICAL-c359t-5f9ec41f2dcffe78cbbd6563aa6ea36c9c6f232f352d0e19bdb0c493d06a8ab93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12517-018-3860-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12517-018-3860-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Alharbi, Raied</creatorcontrib><creatorcontrib>Hsu, Kuolin</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><title>Bias adjustment of satellite-based precipitation estimation using artificial neural networks-cloud classification system over Saudi Arabia</title><title>Arabian journal of geosciences</title><addtitle>Arab J Geosci</addtitle><description>Precipitation is a key input variable for hydrological and climate studies. Rain gauges can provide reliable precipitation measurements at a point of observations. However, the uncertainty of rain measurements increases when a rain gauge network is sparse. Satellite-based precipitation estimations SPEs appear to be an alternative source of measurements for regions with limited rain gauges. However, the systematic bias from satellite precipitation estimation should be estimated and adjusted. In this study, a method of removing the bias from the precipitation estimation from remotely sensed information using artificial neural networks-cloud classification system (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping of gauge and satellite measurements over several climate zones as well as inverse-weighted distance for the interpolation of gauge measurements. Seven years (2010–2016) of daily precipitation estimation from PERSIANN-CCS was used to test and adjust the bias of estimation over Saudi Arabia. The first 6 years (2010–2015) are used for calibration, while 1 year (2016) is used for validation. The results show that the mean yearly bias is reduced by 90%, and the yearly root mean square error is reduced by 68% during the validation year. The experimental results confirm that the proposed method can effectively adjust the bias of satellite-based precipitation estimations.</description><subject>Artificial neural networks</subject><subject>Atmospheric precipitations</subject><subject>Bias</subject><subject>Calibration</subject><subject>Classification</subject><subject>Climate</subject><subject>Climate studies</subject><subject>Earth and Environmental Science</subject><subject>Earth science</subject><subject>Earth Sciences</subject><subject>Gauges</subject><subject>Hydrology</subject><subject>Interpolation</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rain gauges</subject><subject>Rainfall</subject><subject>Remote sensing</subject><subject>Satellites</subject><issn>1866-7511</issn><issn>1866-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OxDAQhCMEEsfBA9BZojbYceI4JZz4k5AogNra-Af5yCXB64B4BZ6aHEFQUe0U881qJsuOOTvljFVnyPOSV5RxRYWSjBY72YIrKWlVCrX7qznfzw4Q14xJxSq1yD4vAiABux4xbVyXSO8JQnJtG5KjDaCzZIjOhCEkSKHviMMUNrMcMXTPBGIKPpgALencGL9Peu_jC1LT9qMlpgXErWWm8AOT25D-zUXyAKMN5DxCE-Aw2_PQojv6ucvs6erycXVD7-6vb1fnd9SIsk609LUzBfe5Nd67SpmmsbKUAkA6ENLURvpc5F6UuWWO141tmClqYZkEBU0tltnJnDvE_nWc6uh1P8ZueqlzVqtCclHwycVnl4k9YnReD3HqHT80Z3o7uZ4n19Pkeju5LiYmnxmcvN2zi3_J_0Nf46OI6g</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Alharbi, Raied</creator><creator>Hsu, Kuolin</creator><creator>Sorooshian, Soroosh</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20180901</creationdate><title>Bias adjustment of satellite-based precipitation estimation using artificial neural networks-cloud classification system over Saudi Arabia</title><author>Alharbi, Raied ; Hsu, Kuolin ; Sorooshian, Soroosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5f9ec41f2dcffe78cbbd6563aa6ea36c9c6f232f352d0e19bdb0c493d06a8ab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Atmospheric precipitations</topic><topic>Bias</topic><topic>Calibration</topic><topic>Classification</topic><topic>Climate</topic><topic>Climate studies</topic><topic>Earth and Environmental Science</topic><topic>Earth science</topic><topic>Earth Sciences</topic><topic>Gauges</topic><topic>Hydrology</topic><topic>Interpolation</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rain gauges</topic><topic>Rainfall</topic><topic>Remote sensing</topic><topic>Satellites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alharbi, Raied</creatorcontrib><creatorcontrib>Hsu, Kuolin</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Arabian journal of geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alharbi, Raied</au><au>Hsu, Kuolin</au><au>Sorooshian, Soroosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bias adjustment of satellite-based precipitation estimation using artificial neural networks-cloud classification system over Saudi Arabia</atitle><jtitle>Arabian journal of geosciences</jtitle><stitle>Arab J Geosci</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>11</volume><issue>17</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><artnum>508</artnum><issn>1866-7511</issn><eissn>1866-7538</eissn><abstract>Precipitation is a key input variable for hydrological and climate studies. Rain gauges can provide reliable precipitation measurements at a point of observations. However, the uncertainty of rain measurements increases when a rain gauge network is sparse. Satellite-based precipitation estimations SPEs appear to be an alternative source of measurements for regions with limited rain gauges. However, the systematic bias from satellite precipitation estimation should be estimated and adjusted. In this study, a method of removing the bias from the precipitation estimation from remotely sensed information using artificial neural networks-cloud classification system (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping of gauge and satellite measurements over several climate zones as well as inverse-weighted distance for the interpolation of gauge measurements. Seven years (2010–2016) of daily precipitation estimation from PERSIANN-CCS was used to test and adjust the bias of estimation over Saudi Arabia. The first 6 years (2010–2015) are used for calibration, while 1 year (2016) is used for validation. The results show that the mean yearly bias is reduced by 90%, and the yearly root mean square error is reduced by 68% during the validation year. The experimental results confirm that the proposed method can effectively adjust the bias of satellite-based precipitation estimations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12517-018-3860-4</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-7511 |
ispartof | Arabian journal of geosciences, 2018-09, Vol.11 (17), p.1-17, Article 508 |
issn | 1866-7511 1866-7538 |
language | eng |
recordid | cdi_proquest_journals_2098461341 |
source | SpringerLink Journals |
subjects | Artificial neural networks Atmospheric precipitations Bias Calibration Classification Climate Climate studies Earth and Environmental Science Earth science Earth Sciences Gauges Hydrology Interpolation Methods Neural networks Original Paper Precipitation Rain Rain gauges Rainfall Remote sensing Satellites |
title | Bias adjustment of satellite-based precipitation estimation using artificial neural networks-cloud classification system over Saudi Arabia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A36%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bias%20adjustment%20of%20satellite-based%20precipitation%20estimation%20using%20artificial%20neural%20networks-cloud%20classification%20system%20over%20Saudi%20Arabia&rft.jtitle=Arabian%20journal%20of%20geosciences&rft.au=Alharbi,%20Raied&rft.date=2018-09-01&rft.volume=11&rft.issue=17&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.artnum=508&rft.issn=1866-7511&rft.eissn=1866-7538&rft_id=info:doi/10.1007/s12517-018-3860-4&rft_dat=%3Cproquest_cross%3E2098461341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2098461341&rft_id=info:pmid/&rfr_iscdi=true |