Bias adjustment of satellite-based precipitation estimation using artificial neural networks-cloud classification system over Saudi Arabia

Precipitation is a key input variable for hydrological and climate studies. Rain gauges can provide reliable precipitation measurements at a point of observations. However, the uncertainty of rain measurements increases when a rain gauge network is sparse. Satellite-based precipitation estimations S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal of geosciences 2018-09, Vol.11 (17), p.1-17, Article 508
Hauptverfasser: Alharbi, Raied, Hsu, Kuolin, Sorooshian, Soroosh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 17
container_start_page 1
container_title Arabian journal of geosciences
container_volume 11
creator Alharbi, Raied
Hsu, Kuolin
Sorooshian, Soroosh
description Precipitation is a key input variable for hydrological and climate studies. Rain gauges can provide reliable precipitation measurements at a point of observations. However, the uncertainty of rain measurements increases when a rain gauge network is sparse. Satellite-based precipitation estimations SPEs appear to be an alternative source of measurements for regions with limited rain gauges. However, the systematic bias from satellite precipitation estimation should be estimated and adjusted. In this study, a method of removing the bias from the precipitation estimation from remotely sensed information using artificial neural networks-cloud classification system (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping of gauge and satellite measurements over several climate zones as well as inverse-weighted distance for the interpolation of gauge measurements. Seven years (2010–2016) of daily precipitation estimation from PERSIANN-CCS was used to test and adjust the bias of estimation over Saudi Arabia. The first 6 years (2010–2015) are used for calibration, while 1 year (2016) is used for validation. The results show that the mean yearly bias is reduced by 90%, and the yearly root mean square error is reduced by 68% during the validation year. The experimental results confirm that the proposed method can effectively adjust the bias of satellite-based precipitation estimations.
doi_str_mv 10.1007/s12517-018-3860-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2098461341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2098461341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5f9ec41f2dcffe78cbbd6563aa6ea36c9c6f232f352d0e19bdb0c493d06a8ab93</originalsourceid><addsrcrecordid>eNp1kL1OxDAQhCMEEsfBA9BZojbYceI4JZz4k5AogNra-Af5yCXB64B4BZ6aHEFQUe0U881qJsuOOTvljFVnyPOSV5RxRYWSjBY72YIrKWlVCrX7qznfzw4Q14xJxSq1yD4vAiABux4xbVyXSO8JQnJtG5KjDaCzZIjOhCEkSKHviMMUNrMcMXTPBGIKPpgALencGL9Peu_jC1LT9qMlpgXErWWm8AOT25D-zUXyAKMN5DxCE-Aw2_PQojv6ucvs6erycXVD7-6vb1fnd9SIsk609LUzBfe5Nd67SpmmsbKUAkA6ENLURvpc5F6UuWWO141tmClqYZkEBU0tltnJnDvE_nWc6uh1P8ZueqlzVqtCclHwycVnl4k9YnReD3HqHT80Z3o7uZ4n19Pkeju5LiYmnxmcvN2zi3_J_0Nf46OI6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098461341</pqid></control><display><type>article</type><title>Bias adjustment of satellite-based precipitation estimation using artificial neural networks-cloud classification system over Saudi Arabia</title><source>SpringerLink Journals</source><creator>Alharbi, Raied ; Hsu, Kuolin ; Sorooshian, Soroosh</creator><creatorcontrib>Alharbi, Raied ; Hsu, Kuolin ; Sorooshian, Soroosh</creatorcontrib><description>Precipitation is a key input variable for hydrological and climate studies. Rain gauges can provide reliable precipitation measurements at a point of observations. However, the uncertainty of rain measurements increases when a rain gauge network is sparse. Satellite-based precipitation estimations SPEs appear to be an alternative source of measurements for regions with limited rain gauges. However, the systematic bias from satellite precipitation estimation should be estimated and adjusted. In this study, a method of removing the bias from the precipitation estimation from remotely sensed information using artificial neural networks-cloud classification system (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping of gauge and satellite measurements over several climate zones as well as inverse-weighted distance for the interpolation of gauge measurements. Seven years (2010–2016) of daily precipitation estimation from PERSIANN-CCS was used to test and adjust the bias of estimation over Saudi Arabia. The first 6 years (2010–2015) are used for calibration, while 1 year (2016) is used for validation. The results show that the mean yearly bias is reduced by 90%, and the yearly root mean square error is reduced by 68% during the validation year. The experimental results confirm that the proposed method can effectively adjust the bias of satellite-based precipitation estimations.</description><identifier>ISSN: 1866-7511</identifier><identifier>EISSN: 1866-7538</identifier><identifier>DOI: 10.1007/s12517-018-3860-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial neural networks ; Atmospheric precipitations ; Bias ; Calibration ; Classification ; Climate ; Climate studies ; Earth and Environmental Science ; Earth science ; Earth Sciences ; Gauges ; Hydrology ; Interpolation ; Methods ; Neural networks ; Original Paper ; Precipitation ; Rain ; Rain gauges ; Rainfall ; Remote sensing ; Satellites</subject><ispartof>Arabian journal of geosciences, 2018-09, Vol.11 (17), p.1-17, Article 508</ispartof><rights>Saudi Society for Geosciences 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5f9ec41f2dcffe78cbbd6563aa6ea36c9c6f232f352d0e19bdb0c493d06a8ab93</citedby><cites>FETCH-LOGICAL-c359t-5f9ec41f2dcffe78cbbd6563aa6ea36c9c6f232f352d0e19bdb0c493d06a8ab93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12517-018-3860-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12517-018-3860-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Alharbi, Raied</creatorcontrib><creatorcontrib>Hsu, Kuolin</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><title>Bias adjustment of satellite-based precipitation estimation using artificial neural networks-cloud classification system over Saudi Arabia</title><title>Arabian journal of geosciences</title><addtitle>Arab J Geosci</addtitle><description>Precipitation is a key input variable for hydrological and climate studies. Rain gauges can provide reliable precipitation measurements at a point of observations. However, the uncertainty of rain measurements increases when a rain gauge network is sparse. Satellite-based precipitation estimations SPEs appear to be an alternative source of measurements for regions with limited rain gauges. However, the systematic bias from satellite precipitation estimation should be estimated and adjusted. In this study, a method of removing the bias from the precipitation estimation from remotely sensed information using artificial neural networks-cloud classification system (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping of gauge and satellite measurements over several climate zones as well as inverse-weighted distance for the interpolation of gauge measurements. Seven years (2010–2016) of daily precipitation estimation from PERSIANN-CCS was used to test and adjust the bias of estimation over Saudi Arabia. The first 6 years (2010–2015) are used for calibration, while 1 year (2016) is used for validation. The results show that the mean yearly bias is reduced by 90%, and the yearly root mean square error is reduced by 68% during the validation year. The experimental results confirm that the proposed method can effectively adjust the bias of satellite-based precipitation estimations.</description><subject>Artificial neural networks</subject><subject>Atmospheric precipitations</subject><subject>Bias</subject><subject>Calibration</subject><subject>Classification</subject><subject>Climate</subject><subject>Climate studies</subject><subject>Earth and Environmental Science</subject><subject>Earth science</subject><subject>Earth Sciences</subject><subject>Gauges</subject><subject>Hydrology</subject><subject>Interpolation</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rain gauges</subject><subject>Rainfall</subject><subject>Remote sensing</subject><subject>Satellites</subject><issn>1866-7511</issn><issn>1866-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OxDAQhCMEEsfBA9BZojbYceI4JZz4k5AogNra-Af5yCXB64B4BZ6aHEFQUe0U881qJsuOOTvljFVnyPOSV5RxRYWSjBY72YIrKWlVCrX7qznfzw4Q14xJxSq1yD4vAiABux4xbVyXSO8JQnJtG5KjDaCzZIjOhCEkSKHviMMUNrMcMXTPBGIKPpgALencGL9Peu_jC1LT9qMlpgXErWWm8AOT25D-zUXyAKMN5DxCE-Aw2_PQojv6ucvs6erycXVD7-6vb1fnd9SIsk609LUzBfe5Nd67SpmmsbKUAkA6ENLURvpc5F6UuWWO141tmClqYZkEBU0tltnJnDvE_nWc6uh1P8ZueqlzVqtCclHwycVnl4k9YnReD3HqHT80Z3o7uZ4n19Pkeju5LiYmnxmcvN2zi3_J_0Nf46OI6g</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Alharbi, Raied</creator><creator>Hsu, Kuolin</creator><creator>Sorooshian, Soroosh</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20180901</creationdate><title>Bias adjustment of satellite-based precipitation estimation using artificial neural networks-cloud classification system over Saudi Arabia</title><author>Alharbi, Raied ; Hsu, Kuolin ; Sorooshian, Soroosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5f9ec41f2dcffe78cbbd6563aa6ea36c9c6f232f352d0e19bdb0c493d06a8ab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Atmospheric precipitations</topic><topic>Bias</topic><topic>Calibration</topic><topic>Classification</topic><topic>Climate</topic><topic>Climate studies</topic><topic>Earth and Environmental Science</topic><topic>Earth science</topic><topic>Earth Sciences</topic><topic>Gauges</topic><topic>Hydrology</topic><topic>Interpolation</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rain gauges</topic><topic>Rainfall</topic><topic>Remote sensing</topic><topic>Satellites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alharbi, Raied</creatorcontrib><creatorcontrib>Hsu, Kuolin</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Arabian journal of geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alharbi, Raied</au><au>Hsu, Kuolin</au><au>Sorooshian, Soroosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bias adjustment of satellite-based precipitation estimation using artificial neural networks-cloud classification system over Saudi Arabia</atitle><jtitle>Arabian journal of geosciences</jtitle><stitle>Arab J Geosci</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>11</volume><issue>17</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><artnum>508</artnum><issn>1866-7511</issn><eissn>1866-7538</eissn><abstract>Precipitation is a key input variable for hydrological and climate studies. Rain gauges can provide reliable precipitation measurements at a point of observations. However, the uncertainty of rain measurements increases when a rain gauge network is sparse. Satellite-based precipitation estimations SPEs appear to be an alternative source of measurements for regions with limited rain gauges. However, the systematic bias from satellite precipitation estimation should be estimated and adjusted. In this study, a method of removing the bias from the precipitation estimation from remotely sensed information using artificial neural networks-cloud classification system (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping of gauge and satellite measurements over several climate zones as well as inverse-weighted distance for the interpolation of gauge measurements. Seven years (2010–2016) of daily precipitation estimation from PERSIANN-CCS was used to test and adjust the bias of estimation over Saudi Arabia. The first 6 years (2010–2015) are used for calibration, while 1 year (2016) is used for validation. The results show that the mean yearly bias is reduced by 90%, and the yearly root mean square error is reduced by 68% during the validation year. The experimental results confirm that the proposed method can effectively adjust the bias of satellite-based precipitation estimations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12517-018-3860-4</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1866-7511
ispartof Arabian journal of geosciences, 2018-09, Vol.11 (17), p.1-17, Article 508
issn 1866-7511
1866-7538
language eng
recordid cdi_proquest_journals_2098461341
source SpringerLink Journals
subjects Artificial neural networks
Atmospheric precipitations
Bias
Calibration
Classification
Climate
Climate studies
Earth and Environmental Science
Earth science
Earth Sciences
Gauges
Hydrology
Interpolation
Methods
Neural networks
Original Paper
Precipitation
Rain
Rain gauges
Rainfall
Remote sensing
Satellites
title Bias adjustment of satellite-based precipitation estimation using artificial neural networks-cloud classification system over Saudi Arabia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A36%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bias%20adjustment%20of%20satellite-based%20precipitation%20estimation%20using%20artificial%20neural%20networks-cloud%20classification%20system%20over%20Saudi%20Arabia&rft.jtitle=Arabian%20journal%20of%20geosciences&rft.au=Alharbi,%20Raied&rft.date=2018-09-01&rft.volume=11&rft.issue=17&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.artnum=508&rft.issn=1866-7511&rft.eissn=1866-7538&rft_id=info:doi/10.1007/s12517-018-3860-4&rft_dat=%3Cproquest_cross%3E2098461341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2098461341&rft_id=info:pmid/&rfr_iscdi=true