Low permittivity MgO–xB2O3–yBaCu(B2O5) microwave dielectric ceramics for low temperature co-fired ceramics technology

MgO– x B 2 O 3 – y BaCu(B 2 O 5 ) ceramics were prepared by a solid-state reaction method. The phase composition and microwave dielectric properties of ceramics were studied. The MgO-rich ceramics ( x  = 1/4, 1/3 and 1/2) contain MgO and Mg 3 B 2 O 6 . But the B 2 O 3 -rich ceramics ( x  = 1, 2 and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2018-11, Vol.29 (21), p.18486-18492
Hauptverfasser: Zhou, Huanfu, Tan, Xianghu, Liu, Xiaobin, Wang, Kangguo, Li, Shixuan, Chen, Xiuli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18492
container_issue 21
container_start_page 18486
container_title Journal of materials science. Materials in electronics
container_volume 29
creator Zhou, Huanfu
Tan, Xianghu
Liu, Xiaobin
Wang, Kangguo
Li, Shixuan
Chen, Xiuli
description MgO– x B 2 O 3 – y BaCu(B 2 O 5 ) ceramics were prepared by a solid-state reaction method. The phase composition and microwave dielectric properties of ceramics were studied. The MgO-rich ceramics ( x  = 1/4, 1/3 and 1/2) contain MgO and Mg 3 B 2 O 6 . But the B 2 O 3 -rich ceramics ( x  = 1, 2 and 3) contain B 2 O 3 , MgB 2 O 4 and Mg 2 B 2 O 5 . The MgO– x B 2 O 3 ( x  = 1/4, 1/3, 1/2, 1, 2 and 3) ceramics show high Q  ×  f of 41,754–105,852 GHz, low ε r of 4.24 ~ 7.68 and negative τ f values of − 56 to − 30 ppm °C −1 with tuning the x values. The BaCu(B 2 O 5 ) (BCB) was used to reduce the sintering temperature of MgO–2B 2 O 3 ceramic. The MgO–2B 2 O 3 -4 wt% BCB ceramic sintered at 925 °C exhibits good microwave dielectric properties with high Q  ×  f of 30,589 GHz, low ε r of 4.8 and negative τ f value of − 40 ppm °C −1 . Importantly, MgO–2B 2 O 3 -4 wt% BCB ceramic has a good chemical compatibility with Ag, which illustrates that it is a candidate material for low temperature co-fired ceramic devices.
doi_str_mv 10.1007/s10854-018-9964-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2098290778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2098290778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2315-5f0e71687d147c71277c02d0f7ed4d9182b011defb6369099a41abb9ba07f7c3</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqXwAGyRWGAwXDtxbI-04k8q6tKBzXIcp6RKmmInLdl4B96QJ8FVkDoxHV3d75yrexC6JHBLAPidJyBYgoEILGWaYHaERoTxGCeCvh2jEUjGccIoPUVn3q8AIE1iMUL9rNlFG-vqsm3Lbdn20ety_vP1_Tmh8zhoP9HT7joM7CaqS-Oand7aKC9tZU3rShMZ63RY-KhoXFSFsNbWIU-3nbORaXBROpsfqNaa93VTNcv-HJ0UuvL24k_HaPH4sJg-49n86WV6P8OGxoRhVoDlJBU8Jwk3nFDODdAcCm7zJJdE0AwIyW2RpXEqQUqdEJ1lMtPAC27iMboaYjeu-eisb9Wq6dw6XFQUpKASOBeBIgMVPvTe2UJtXFlr1ysCal-wGgpWoWC1L1ix4KGDxwd2vbTukPy_6RefAIB-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098290778</pqid></control><display><type>article</type><title>Low permittivity MgO–xB2O3–yBaCu(B2O5) microwave dielectric ceramics for low temperature co-fired ceramics technology</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhou, Huanfu ; Tan, Xianghu ; Liu, Xiaobin ; Wang, Kangguo ; Li, Shixuan ; Chen, Xiuli</creator><creatorcontrib>Zhou, Huanfu ; Tan, Xianghu ; Liu, Xiaobin ; Wang, Kangguo ; Li, Shixuan ; Chen, Xiuli</creatorcontrib><description>MgO– x B 2 O 3 – y BaCu(B 2 O 5 ) ceramics were prepared by a solid-state reaction method. The phase composition and microwave dielectric properties of ceramics were studied. The MgO-rich ceramics ( x  = 1/4, 1/3 and 1/2) contain MgO and Mg 3 B 2 O 6 . But the B 2 O 3 -rich ceramics ( x  = 1, 2 and 3) contain B 2 O 3 , MgB 2 O 4 and Mg 2 B 2 O 5 . The MgO– x B 2 O 3 ( x  = 1/4, 1/3, 1/2, 1, 2 and 3) ceramics show high Q  ×  f of 41,754–105,852 GHz, low ε r of 4.24 ~ 7.68 and negative τ f values of − 56 to − 30 ppm °C −1 with tuning the x values. The BaCu(B 2 O 5 ) (BCB) was used to reduce the sintering temperature of MgO–2B 2 O 3 ceramic. The MgO–2B 2 O 3 -4 wt% BCB ceramic sintered at 925 °C exhibits good microwave dielectric properties with high Q  ×  f of 30,589 GHz, low ε r of 4.8 and negative τ f value of − 40 ppm °C −1 . Importantly, MgO–2B 2 O 3 -4 wt% BCB ceramic has a good chemical compatibility with Ag, which illustrates that it is a candidate material for low temperature co-fired ceramic devices.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-018-9964-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Borides ; Boron oxides ; Ceramics ; Characterization and Evaluation of Materials ; Chemical compatibility ; Chemistry and Materials Science ; Dielectric properties ; Low temperature ; Magnesium oxide ; Materials Science ; Materials selection ; Optical and Electronic Materials ; Organic chemistry ; Phase composition</subject><ispartof>Journal of materials science. Materials in electronics, 2018-11, Vol.29 (21), p.18486-18492</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2315-5f0e71687d147c71277c02d0f7ed4d9182b011defb6369099a41abb9ba07f7c3</citedby><cites>FETCH-LOGICAL-c2315-5f0e71687d147c71277c02d0f7ed4d9182b011defb6369099a41abb9ba07f7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-018-9964-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-018-9964-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zhou, Huanfu</creatorcontrib><creatorcontrib>Tan, Xianghu</creatorcontrib><creatorcontrib>Liu, Xiaobin</creatorcontrib><creatorcontrib>Wang, Kangguo</creatorcontrib><creatorcontrib>Li, Shixuan</creatorcontrib><creatorcontrib>Chen, Xiuli</creatorcontrib><title>Low permittivity MgO–xB2O3–yBaCu(B2O5) microwave dielectric ceramics for low temperature co-fired ceramics technology</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>MgO– x B 2 O 3 – y BaCu(B 2 O 5 ) ceramics were prepared by a solid-state reaction method. The phase composition and microwave dielectric properties of ceramics were studied. The MgO-rich ceramics ( x  = 1/4, 1/3 and 1/2) contain MgO and Mg 3 B 2 O 6 . But the B 2 O 3 -rich ceramics ( x  = 1, 2 and 3) contain B 2 O 3 , MgB 2 O 4 and Mg 2 B 2 O 5 . The MgO– x B 2 O 3 ( x  = 1/4, 1/3, 1/2, 1, 2 and 3) ceramics show high Q  ×  f of 41,754–105,852 GHz, low ε r of 4.24 ~ 7.68 and negative τ f values of − 56 to − 30 ppm °C −1 with tuning the x values. The BaCu(B 2 O 5 ) (BCB) was used to reduce the sintering temperature of MgO–2B 2 O 3 ceramic. The MgO–2B 2 O 3 -4 wt% BCB ceramic sintered at 925 °C exhibits good microwave dielectric properties with high Q  ×  f of 30,589 GHz, low ε r of 4.8 and negative τ f value of − 40 ppm °C −1 . Importantly, MgO–2B 2 O 3 -4 wt% BCB ceramic has a good chemical compatibility with Ag, which illustrates that it is a candidate material for low temperature co-fired ceramic devices.</description><subject>Borides</subject><subject>Boron oxides</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical compatibility</subject><subject>Chemistry and Materials Science</subject><subject>Dielectric properties</subject><subject>Low temperature</subject><subject>Magnesium oxide</subject><subject>Materials Science</subject><subject>Materials selection</subject><subject>Optical and Electronic Materials</subject><subject>Organic chemistry</subject><subject>Phase composition</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kL1OwzAUhS0EEqXwAGyRWGAwXDtxbI-04k8q6tKBzXIcp6RKmmInLdl4B96QJ8FVkDoxHV3d75yrexC6JHBLAPidJyBYgoEILGWaYHaERoTxGCeCvh2jEUjGccIoPUVn3q8AIE1iMUL9rNlFG-vqsm3Lbdn20ety_vP1_Tmh8zhoP9HT7joM7CaqS-Oand7aKC9tZU3rShMZ63RY-KhoXFSFsNbWIU-3nbORaXBROpsfqNaa93VTNcv-HJ0UuvL24k_HaPH4sJg-49n86WV6P8OGxoRhVoDlJBU8Jwk3nFDODdAcCm7zJJdE0AwIyW2RpXEqQUqdEJ1lMtPAC27iMboaYjeu-eisb9Wq6dw6XFQUpKASOBeBIgMVPvTe2UJtXFlr1ysCal-wGgpWoWC1L1ix4KGDxwd2vbTukPy_6RefAIB-</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Zhou, Huanfu</creator><creator>Tan, Xianghu</creator><creator>Liu, Xiaobin</creator><creator>Wang, Kangguo</creator><creator>Li, Shixuan</creator><creator>Chen, Xiuli</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20181101</creationdate><title>Low permittivity MgO–xB2O3–yBaCu(B2O5) microwave dielectric ceramics for low temperature co-fired ceramics technology</title><author>Zhou, Huanfu ; Tan, Xianghu ; Liu, Xiaobin ; Wang, Kangguo ; Li, Shixuan ; Chen, Xiuli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2315-5f0e71687d147c71277c02d0f7ed4d9182b011defb6369099a41abb9ba07f7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Borides</topic><topic>Boron oxides</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical compatibility</topic><topic>Chemistry and Materials Science</topic><topic>Dielectric properties</topic><topic>Low temperature</topic><topic>Magnesium oxide</topic><topic>Materials Science</topic><topic>Materials selection</topic><topic>Optical and Electronic Materials</topic><topic>Organic chemistry</topic><topic>Phase composition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Huanfu</creatorcontrib><creatorcontrib>Tan, Xianghu</creatorcontrib><creatorcontrib>Liu, Xiaobin</creatorcontrib><creatorcontrib>Wang, Kangguo</creatorcontrib><creatorcontrib>Li, Shixuan</creatorcontrib><creatorcontrib>Chen, Xiuli</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Huanfu</au><au>Tan, Xianghu</au><au>Liu, Xiaobin</au><au>Wang, Kangguo</au><au>Li, Shixuan</au><au>Chen, Xiuli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low permittivity MgO–xB2O3–yBaCu(B2O5) microwave dielectric ceramics for low temperature co-fired ceramics technology</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>29</volume><issue>21</issue><spage>18486</spage><epage>18492</epage><pages>18486-18492</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>MgO– x B 2 O 3 – y BaCu(B 2 O 5 ) ceramics were prepared by a solid-state reaction method. The phase composition and microwave dielectric properties of ceramics were studied. The MgO-rich ceramics ( x  = 1/4, 1/3 and 1/2) contain MgO and Mg 3 B 2 O 6 . But the B 2 O 3 -rich ceramics ( x  = 1, 2 and 3) contain B 2 O 3 , MgB 2 O 4 and Mg 2 B 2 O 5 . The MgO– x B 2 O 3 ( x  = 1/4, 1/3, 1/2, 1, 2 and 3) ceramics show high Q  ×  f of 41,754–105,852 GHz, low ε r of 4.24 ~ 7.68 and negative τ f values of − 56 to − 30 ppm °C −1 with tuning the x values. The BaCu(B 2 O 5 ) (BCB) was used to reduce the sintering temperature of MgO–2B 2 O 3 ceramic. The MgO–2B 2 O 3 -4 wt% BCB ceramic sintered at 925 °C exhibits good microwave dielectric properties with high Q  ×  f of 30,589 GHz, low ε r of 4.8 and negative τ f value of − 40 ppm °C −1 . Importantly, MgO–2B 2 O 3 -4 wt% BCB ceramic has a good chemical compatibility with Ag, which illustrates that it is a candidate material for low temperature co-fired ceramic devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-018-9964-5</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2018-11, Vol.29 (21), p.18486-18492
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2098290778
source SpringerLink Journals - AutoHoldings
subjects Borides
Boron oxides
Ceramics
Characterization and Evaluation of Materials
Chemical compatibility
Chemistry and Materials Science
Dielectric properties
Low temperature
Magnesium oxide
Materials Science
Materials selection
Optical and Electronic Materials
Organic chemistry
Phase composition
title Low permittivity MgO–xB2O3–yBaCu(B2O5) microwave dielectric ceramics for low temperature co-fired ceramics technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20permittivity%20MgO%E2%80%93xB2O3%E2%80%93yBaCu(B2O5)%20microwave%20dielectric%20ceramics%20for%20low%20temperature%20co-fired%20ceramics%20technology&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zhou,%20Huanfu&rft.date=2018-11-01&rft.volume=29&rft.issue=21&rft.spage=18486&rft.epage=18492&rft.pages=18486-18492&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-018-9964-5&rft_dat=%3Cproquest_cross%3E2098290778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2098290778&rft_id=info:pmid/&rfr_iscdi=true