New measures for comparing matrices and their application to image processing

•We present the concept of matrix resemblance functions, i.e., functions that measure the similarity between two matrices.•We give two construction methods and study the main properties of matrix resemblance functions.•We design an algorithm for image comparison based on matrix resemblance functions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematical Modelling 2018-09, Vol.61, p.498-520
Hauptverfasser: Sesma-Sara, Mikel, De Miguel, Laura, Pagola, Miguel, Burusco, Ana, Mesiar, Radko, Bustince, Humberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 520
container_issue
container_start_page 498
container_title Applied Mathematical Modelling
container_volume 61
creator Sesma-Sara, Mikel
De Miguel, Laura
Pagola, Miguel
Burusco, Ana
Mesiar, Radko
Bustince, Humberto
description •We present the concept of matrix resemblance functions, i.e., functions that measure the similarity between two matrices.•We give two construction methods and study the main properties of matrix resemblance functions.•We design an algorithm for image comparison based on matrix resemblance functions.•We propose an application of this algorithm for defect detection in industrial manufacturing processes.•We propose an application of this algorithm for video motion detection and object tracking. In this work we present the class of matrix resemblance functions, i.e., functions that measure the difference between two matrices. We present two construction methods and study the properties that matrix resemblance functions satisfy, which suggest that this class of functions is an appropriate tool for comparing images. Hence, we present a comparison method for grayscale images whose result is a new image, which enables to locate the areas where both images are equally similar or dissimilar. Additionally, we propose some applications in which this comparison method can be used, such as defect detection in industrial manufacturing processes and video motion detection and object tracking.
doi_str_mv 10.1016/j.apm.2018.05.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2097972793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X18302166</els_id><sourcerecordid>2097972793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-821cc5ceb83fdd95dc7f4c854efd51ec9c3001f2d5588c1f1e12f6aebff26d03</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRS0EEiHwAXSWqHcZ78b7EBWKeEkBmhR0ljMeB0fZ9WJvQPw9jkJBRTUP3TN3dBm7FJALENX1JtdDlxcgmhxkDlAdsQmUUGctzN6O__Sn7CzGDQDINE3Y8wt98Y503AWK3PrA0XeDDq5f806PwWFa697w8Z1c4HoYtg716HzPR89dp9fEh-CTKibknJ1YvY108VunbHl_t5w_ZovXh6f57SLDsmrGrCkEokRaNaU1ppUGazvDRs7IGikIWywBhC2MlE2DwgoSha00rawtKgPllF0dzibnjx3FUW38LvTJURXQ1m1d1G2ZVOKgwuBjDGTVENLD4VsJUPvQ1Eal0NQ-NAVSpdASc3NgKH3_6SioiI56JOMC4aiMd__QP7uWdlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2097972793</pqid></control><display><type>article</type><title>New measures for comparing matrices and their application to image processing</title><source>Education Source</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Business Source Complete</source><creator>Sesma-Sara, Mikel ; De Miguel, Laura ; Pagola, Miguel ; Burusco, Ana ; Mesiar, Radko ; Bustince, Humberto</creator><creatorcontrib>Sesma-Sara, Mikel ; De Miguel, Laura ; Pagola, Miguel ; Burusco, Ana ; Mesiar, Radko ; Bustince, Humberto</creatorcontrib><description>•We present the concept of matrix resemblance functions, i.e., functions that measure the similarity between two matrices.•We give two construction methods and study the main properties of matrix resemblance functions.•We design an algorithm for image comparison based on matrix resemblance functions.•We propose an application of this algorithm for defect detection in industrial manufacturing processes.•We propose an application of this algorithm for video motion detection and object tracking. In this work we present the class of matrix resemblance functions, i.e., functions that measure the difference between two matrices. We present two construction methods and study the properties that matrix resemblance functions satisfy, which suggest that this class of functions is an appropriate tool for comparing images. Hence, we present a comparison method for grayscale images whose result is a new image, which enables to locate the areas where both images are equally similar or dissimilar. Additionally, we propose some applications in which this comparison method can be used, such as defect detection in industrial manufacturing processes and video motion detection and object tracking.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2018.05.006</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Defect detection ; Defects ; Fuzzy mathematical morphology ; Image processing ; Image processing systems ; Inclusion grades ; Manufacturing ; Matrix ; Matrix resemblance functions ; Motion detection ; Motion perception ; Restricted equivalence functions</subject><ispartof>Applied Mathematical Modelling, 2018-09, Vol.61, p.498-520</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier BV Sep 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-821cc5ceb83fdd95dc7f4c854efd51ec9c3001f2d5588c1f1e12f6aebff26d03</citedby><cites>FETCH-LOGICAL-c368t-821cc5ceb83fdd95dc7f4c854efd51ec9c3001f2d5588c1f1e12f6aebff26d03</cites><orcidid>0000-0002-1279-6195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0307904X18302166$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Sesma-Sara, Mikel</creatorcontrib><creatorcontrib>De Miguel, Laura</creatorcontrib><creatorcontrib>Pagola, Miguel</creatorcontrib><creatorcontrib>Burusco, Ana</creatorcontrib><creatorcontrib>Mesiar, Radko</creatorcontrib><creatorcontrib>Bustince, Humberto</creatorcontrib><title>New measures for comparing matrices and their application to image processing</title><title>Applied Mathematical Modelling</title><description>•We present the concept of matrix resemblance functions, i.e., functions that measure the similarity between two matrices.•We give two construction methods and study the main properties of matrix resemblance functions.•We design an algorithm for image comparison based on matrix resemblance functions.•We propose an application of this algorithm for defect detection in industrial manufacturing processes.•We propose an application of this algorithm for video motion detection and object tracking. In this work we present the class of matrix resemblance functions, i.e., functions that measure the difference between two matrices. We present two construction methods and study the properties that matrix resemblance functions satisfy, which suggest that this class of functions is an appropriate tool for comparing images. Hence, we present a comparison method for grayscale images whose result is a new image, which enables to locate the areas where both images are equally similar or dissimilar. Additionally, we propose some applications in which this comparison method can be used, such as defect detection in industrial manufacturing processes and video motion detection and object tracking.</description><subject>Defect detection</subject><subject>Defects</subject><subject>Fuzzy mathematical morphology</subject><subject>Image processing</subject><subject>Image processing systems</subject><subject>Inclusion grades</subject><subject>Manufacturing</subject><subject>Matrix</subject><subject>Matrix resemblance functions</subject><subject>Motion detection</subject><subject>Motion perception</subject><subject>Restricted equivalence functions</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOAzEQRS0EEiHwAXSWqHcZ78b7EBWKeEkBmhR0ljMeB0fZ9WJvQPw9jkJBRTUP3TN3dBm7FJALENX1JtdDlxcgmhxkDlAdsQmUUGctzN6O__Sn7CzGDQDINE3Y8wt98Y503AWK3PrA0XeDDq5f806PwWFa697w8Z1c4HoYtg716HzPR89dp9fEh-CTKibknJ1YvY108VunbHl_t5w_ZovXh6f57SLDsmrGrCkEokRaNaU1ppUGazvDRs7IGikIWywBhC2MlE2DwgoSha00rawtKgPllF0dzibnjx3FUW38LvTJURXQ1m1d1G2ZVOKgwuBjDGTVENLD4VsJUPvQ1Eal0NQ-NAVSpdASc3NgKH3_6SioiI56JOMC4aiMd__QP7uWdlQ</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Sesma-Sara, Mikel</creator><creator>De Miguel, Laura</creator><creator>Pagola, Miguel</creator><creator>Burusco, Ana</creator><creator>Mesiar, Radko</creator><creator>Bustince, Humberto</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1279-6195</orcidid></search><sort><creationdate>201809</creationdate><title>New measures for comparing matrices and their application to image processing</title><author>Sesma-Sara, Mikel ; De Miguel, Laura ; Pagola, Miguel ; Burusco, Ana ; Mesiar, Radko ; Bustince, Humberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-821cc5ceb83fdd95dc7f4c854efd51ec9c3001f2d5588c1f1e12f6aebff26d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Defect detection</topic><topic>Defects</topic><topic>Fuzzy mathematical morphology</topic><topic>Image processing</topic><topic>Image processing systems</topic><topic>Inclusion grades</topic><topic>Manufacturing</topic><topic>Matrix</topic><topic>Matrix resemblance functions</topic><topic>Motion detection</topic><topic>Motion perception</topic><topic>Restricted equivalence functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sesma-Sara, Mikel</creatorcontrib><creatorcontrib>De Miguel, Laura</creatorcontrib><creatorcontrib>Pagola, Miguel</creatorcontrib><creatorcontrib>Burusco, Ana</creatorcontrib><creatorcontrib>Mesiar, Radko</creatorcontrib><creatorcontrib>Bustince, Humberto</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sesma-Sara, Mikel</au><au>De Miguel, Laura</au><au>Pagola, Miguel</au><au>Burusco, Ana</au><au>Mesiar, Radko</au><au>Bustince, Humberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New measures for comparing matrices and their application to image processing</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2018-09</date><risdate>2018</risdate><volume>61</volume><spage>498</spage><epage>520</epage><pages>498-520</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•We present the concept of matrix resemblance functions, i.e., functions that measure the similarity between two matrices.•We give two construction methods and study the main properties of matrix resemblance functions.•We design an algorithm for image comparison based on matrix resemblance functions.•We propose an application of this algorithm for defect detection in industrial manufacturing processes.•We propose an application of this algorithm for video motion detection and object tracking. In this work we present the class of matrix resemblance functions, i.e., functions that measure the difference between two matrices. We present two construction methods and study the properties that matrix resemblance functions satisfy, which suggest that this class of functions is an appropriate tool for comparing images. Hence, we present a comparison method for grayscale images whose result is a new image, which enables to locate the areas where both images are equally similar or dissimilar. Additionally, we propose some applications in which this comparison method can be used, such as defect detection in industrial manufacturing processes and video motion detection and object tracking.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2018.05.006</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-1279-6195</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied Mathematical Modelling, 2018-09, Vol.61, p.498-520
issn 0307-904X
1088-8691
0307-904X
language eng
recordid cdi_proquest_journals_2097972793
source Education Source; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Business Source Complete
subjects Defect detection
Defects
Fuzzy mathematical morphology
Image processing
Image processing systems
Inclusion grades
Manufacturing
Matrix
Matrix resemblance functions
Motion detection
Motion perception
Restricted equivalence functions
title New measures for comparing matrices and their application to image processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20measures%20for%20comparing%20matrices%20and%20their%20application%20to%20image%20processing&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Sesma-Sara,%20Mikel&rft.date=2018-09&rft.volume=61&rft.spage=498&rft.epage=520&rft.pages=498-520&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2018.05.006&rft_dat=%3Cproquest_cross%3E2097972793%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2097972793&rft_id=info:pmid/&rft_els_id=S0307904X18302166&rfr_iscdi=true