Reactive model for autonomous vehicles formation following a mobile reference
•The design of a reactive model for multiple mobile agents that leads the group to a formation.•The introduction of the so-called virtual agent, whose role is to guide the group.•Parameter estimation for a set of desired group objectives, using evolutionary optimization algorithms. The emergence of...
Gespeichert in:
Veröffentlicht in: | Applied Mathematical Modelling 2018-09, Vol.61, p.167-180 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | |
container_start_page | 167 |
container_title | Applied Mathematical Modelling |
container_volume | 61 |
creator | Freitas, Vander L.S. de Sousa, Fabiano Luis Macau, Elbert E.N. |
description | •The design of a reactive model for multiple mobile agents that leads the group to a formation.•The introduction of the so-called virtual agent, whose role is to guide the group.•Parameter estimation for a set of desired group objectives, using evolutionary optimization algorithms.
The emergence of collective motion in nature is ubiquitous and can be observed from colonies of bacteria to flocks of birds. The scientific community is interested in understanding how the local interactions drive the crowd toward global behaviors. This paper presents an agent-based reactive model for groups of vehicles that aims to make the formation to follow a moving reference, represented as a virtual agent. The model is called reactive because the agents do not keep previous information but only respond to the current system state. Moreover, they only communicate with their close neighbors, limited by their sensory radius, except with the virtual agent that can be seen by everyone at the whole time. The aim of the model is to group the agents around the virtual agent while it moves to desirable directions. We solve the inverse problem of parameter estimation in order to drive the model toward specific objectives. This task is performed with the Generalized Extremal Optimization (GEO) algorithm, and the results are tested with path planning scenarios. |
doi_str_mv | 10.1016/j.apm.2018.04.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2097971033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X18301835</els_id><sourcerecordid>2097971033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-370ad698af2d9d6ee222e721cd58dc0ab4982da36cd625d0a7501b84136972de3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvBU8t06StmnxJItfsCKIgreQTaaa0jZr0q74701ZD548zZvhvZk3j5BzChkFWl62mdr2GQNaZZBnQOkBWQAHkdaQvx3-wcfkJIQWAIrYLcjjMyo92h0mvTPYJY3ziZpGN7jeTSHZ4YfVHYZ53qvRuiGirnNfdnhPVNRsbIeJxwY9DhpPyVGjuoBnv3VJXm9vXlb36frp7mF1vU41Z8WYcgHKlHWlGmZqUyIyxlAwqk1RGQ1qk9cVM4qX2pSsMKBEAXRT5ZSXtWAG-ZJc7PduvfucMIyydZMf4knJoBa1oMB5ZNE9S3sXQjQpt972yn9LCnJOTbYypibn1CTkMqYWNVd7DUb7O4teBm3n14z1qEdpnP1H_QOcSXWJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2097971033</pqid></control><display><type>article</type><title>Reactive model for autonomous vehicles formation following a mobile reference</title><source>Business Source Complete</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>EBSCOhost Education Source</source><creator>Freitas, Vander L.S. ; de Sousa, Fabiano Luis ; Macau, Elbert E.N.</creator><creatorcontrib>Freitas, Vander L.S. ; de Sousa, Fabiano Luis ; Macau, Elbert E.N.</creatorcontrib><description>•The design of a reactive model for multiple mobile agents that leads the group to a formation.•The introduction of the so-called virtual agent, whose role is to guide the group.•Parameter estimation for a set of desired group objectives, using evolutionary optimization algorithms.
The emergence of collective motion in nature is ubiquitous and can be observed from colonies of bacteria to flocks of birds. The scientific community is interested in understanding how the local interactions drive the crowd toward global behaviors. This paper presents an agent-based reactive model for groups of vehicles that aims to make the formation to follow a moving reference, represented as a virtual agent. The model is called reactive because the agents do not keep previous information but only respond to the current system state. Moreover, they only communicate with their close neighbors, limited by their sensory radius, except with the virtual agent that can be seen by everyone at the whole time. The aim of the model is to group the agents around the virtual agent while it moves to desirable directions. We solve the inverse problem of parameter estimation in order to drive the model toward specific objectives. This task is performed with the Generalized Extremal Optimization (GEO) algorithm, and the results are tested with path planning scenarios.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2018.04.011</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Algorithms ; Autonomous vehicles ; Collective motion ; Evolutionary optimization ; Inverse problems ; Motion control ; Multiagent systems ; Optimization ; Order parameters ; Parameter estimation ; Path planning ; Reactive agents</subject><ispartof>Applied Mathematical Modelling, 2018-09, Vol.61, p.167-180</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier BV Sep 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-370ad698af2d9d6ee222e721cd58dc0ab4982da36cd625d0a7501b84136972de3</citedby><cites>FETCH-LOGICAL-c325t-370ad698af2d9d6ee222e721cd58dc0ab4982da36cd625d0a7501b84136972de3</cites><orcidid>0000-0001-7989-0816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2018.04.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Freitas, Vander L.S.</creatorcontrib><creatorcontrib>de Sousa, Fabiano Luis</creatorcontrib><creatorcontrib>Macau, Elbert E.N.</creatorcontrib><title>Reactive model for autonomous vehicles formation following a mobile reference</title><title>Applied Mathematical Modelling</title><description>•The design of a reactive model for multiple mobile agents that leads the group to a formation.•The introduction of the so-called virtual agent, whose role is to guide the group.•Parameter estimation for a set of desired group objectives, using evolutionary optimization algorithms.
The emergence of collective motion in nature is ubiquitous and can be observed from colonies of bacteria to flocks of birds. The scientific community is interested in understanding how the local interactions drive the crowd toward global behaviors. This paper presents an agent-based reactive model for groups of vehicles that aims to make the formation to follow a moving reference, represented as a virtual agent. The model is called reactive because the agents do not keep previous information but only respond to the current system state. Moreover, they only communicate with their close neighbors, limited by their sensory radius, except with the virtual agent that can be seen by everyone at the whole time. The aim of the model is to group the agents around the virtual agent while it moves to desirable directions. We solve the inverse problem of parameter estimation in order to drive the model toward specific objectives. This task is performed with the Generalized Extremal Optimization (GEO) algorithm, and the results are tested with path planning scenarios.</description><subject>Algorithms</subject><subject>Autonomous vehicles</subject><subject>Collective motion</subject><subject>Evolutionary optimization</subject><subject>Inverse problems</subject><subject>Motion control</subject><subject>Multiagent systems</subject><subject>Optimization</subject><subject>Order parameters</subject><subject>Parameter estimation</subject><subject>Path planning</subject><subject>Reactive agents</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvBU8t06StmnxJItfsCKIgreQTaaa0jZr0q74701ZD548zZvhvZk3j5BzChkFWl62mdr2GQNaZZBnQOkBWQAHkdaQvx3-wcfkJIQWAIrYLcjjMyo92h0mvTPYJY3ziZpGN7jeTSHZ4YfVHYZ53qvRuiGirnNfdnhPVNRsbIeJxwY9DhpPyVGjuoBnv3VJXm9vXlb36frp7mF1vU41Z8WYcgHKlHWlGmZqUyIyxlAwqk1RGQ1qk9cVM4qX2pSsMKBEAXRT5ZSXtWAG-ZJc7PduvfucMIyydZMf4knJoBa1oMB5ZNE9S3sXQjQpt972yn9LCnJOTbYypibn1CTkMqYWNVd7DUb7O4teBm3n14z1qEdpnP1H_QOcSXWJ</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Freitas, Vander L.S.</creator><creator>de Sousa, Fabiano Luis</creator><creator>Macau, Elbert E.N.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7989-0816</orcidid></search><sort><creationdate>201809</creationdate><title>Reactive model for autonomous vehicles formation following a mobile reference</title><author>Freitas, Vander L.S. ; de Sousa, Fabiano Luis ; Macau, Elbert E.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-370ad698af2d9d6ee222e721cd58dc0ab4982da36cd625d0a7501b84136972de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Autonomous vehicles</topic><topic>Collective motion</topic><topic>Evolutionary optimization</topic><topic>Inverse problems</topic><topic>Motion control</topic><topic>Multiagent systems</topic><topic>Optimization</topic><topic>Order parameters</topic><topic>Parameter estimation</topic><topic>Path planning</topic><topic>Reactive agents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freitas, Vander L.S.</creatorcontrib><creatorcontrib>de Sousa, Fabiano Luis</creatorcontrib><creatorcontrib>Macau, Elbert E.N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freitas, Vander L.S.</au><au>de Sousa, Fabiano Luis</au><au>Macau, Elbert E.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactive model for autonomous vehicles formation following a mobile reference</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2018-09</date><risdate>2018</risdate><volume>61</volume><spage>167</spage><epage>180</epage><pages>167-180</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•The design of a reactive model for multiple mobile agents that leads the group to a formation.•The introduction of the so-called virtual agent, whose role is to guide the group.•Parameter estimation for a set of desired group objectives, using evolutionary optimization algorithms.
The emergence of collective motion in nature is ubiquitous and can be observed from colonies of bacteria to flocks of birds. The scientific community is interested in understanding how the local interactions drive the crowd toward global behaviors. This paper presents an agent-based reactive model for groups of vehicles that aims to make the formation to follow a moving reference, represented as a virtual agent. The model is called reactive because the agents do not keep previous information but only respond to the current system state. Moreover, they only communicate with their close neighbors, limited by their sensory radius, except with the virtual agent that can be seen by everyone at the whole time. The aim of the model is to group the agents around the virtual agent while it moves to desirable directions. We solve the inverse problem of parameter estimation in order to drive the model toward specific objectives. This task is performed with the Generalized Extremal Optimization (GEO) algorithm, and the results are tested with path planning scenarios.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2018.04.011</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7989-0816</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied Mathematical Modelling, 2018-09, Vol.61, p.167-180 |
issn | 0307-904X 1088-8691 0307-904X |
language | eng |
recordid | cdi_proquest_journals_2097971033 |
source | Business Source Complete; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals; EBSCOhost Education Source |
subjects | Algorithms Autonomous vehicles Collective motion Evolutionary optimization Inverse problems Motion control Multiagent systems Optimization Order parameters Parameter estimation Path planning Reactive agents |
title | Reactive model for autonomous vehicles formation following a mobile reference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactive%20model%20for%20autonomous%20vehicles%20formation%20following%20a%20mobile%20reference&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Freitas,%20Vander%20L.S.&rft.date=2018-09&rft.volume=61&rft.spage=167&rft.epage=180&rft.pages=167-180&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2018.04.011&rft_dat=%3Cproquest_cross%3E2097971033%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2097971033&rft_id=info:pmid/&rft_els_id=S0307904X18301835&rfr_iscdi=true |