Extreme Value Theory for Open Set Classification -- GPD and GEV Classifiers
Classification tasks usually assume that all possible classes are present during the training phase. This is restrictive if the algorithm is used over a long time and possibly encounters samples from unknown classes. The recently introduced extreme value machine, a classifier motivated by extreme va...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Vignotto, Edoardo Engelke, Sebastian |
description | Classification tasks usually assume that all possible classes are present during the training phase. This is restrictive if the algorithm is used over a long time and possibly encounters samples from unknown classes. The recently introduced extreme value machine, a classifier motivated by extreme value theory, addresses this problem and achieves competitive performance in specific cases. We show that this algorithm can fail when the geometries of known and unknown classes differ. To overcome this problem, we propose two new algorithms relying on approximations from extreme value theory. We show the effectiveness of our classifiers in simulations and on the LETTER and MNIST data sets. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2097853637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2097853637</sourcerecordid><originalsourceid>FETCH-proquest_journals_20978536373</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwDsTE_jjXWsFBwdK1BL3FlprU3BT07XUQZ6czfGfCAqnUiqdrKWcsJOqEEDJOZBSpgB3yp3d4R6h0PyKUN7TuBY11cBzQwBk9ZL0mapv2on1rDXAOxWkL2lyhyKufoqMFmza6Jwy_nbPlLi-zPR-cfYxIvu7s6MyHaik2SRqpWCXqv-sNL287WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2097853637</pqid></control><display><type>article</type><title>Extreme Value Theory for Open Set Classification -- GPD and GEV Classifiers</title><source>Free E- Journals</source><creator>Vignotto, Edoardo ; Engelke, Sebastian</creator><creatorcontrib>Vignotto, Edoardo ; Engelke, Sebastian</creatorcontrib><description>Classification tasks usually assume that all possible classes are present during the training phase. This is restrictive if the algorithm is used over a long time and possibly encounters samples from unknown classes. The recently introduced extreme value machine, a classifier motivated by extreme value theory, addresses this problem and achieves competitive performance in specific cases. We show that this algorithm can fail when the geometries of known and unknown classes differ. To overcome this problem, we propose two new algorithms relying on approximations from extreme value theory. We show the effectiveness of our classifiers in simulations and on the LETTER and MNIST data sets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Classification ; Classifiers ; Computer simulation ; Extreme value theory ; Extreme values ; Normal distribution</subject><ispartof>arXiv.org, 2019-07</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Vignotto, Edoardo</creatorcontrib><creatorcontrib>Engelke, Sebastian</creatorcontrib><title>Extreme Value Theory for Open Set Classification -- GPD and GEV Classifiers</title><title>arXiv.org</title><description>Classification tasks usually assume that all possible classes are present during the training phase. This is restrictive if the algorithm is used over a long time and possibly encounters samples from unknown classes. The recently introduced extreme value machine, a classifier motivated by extreme value theory, addresses this problem and achieves competitive performance in specific cases. We show that this algorithm can fail when the geometries of known and unknown classes differ. To overcome this problem, we propose two new algorithms relying on approximations from extreme value theory. We show the effectiveness of our classifiers in simulations and on the LETTER and MNIST data sets.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computer simulation</subject><subject>Extreme value theory</subject><subject>Extreme values</subject><subject>Normal distribution</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwDsTE_jjXWsFBwdK1BL3FlprU3BT07XUQZ6czfGfCAqnUiqdrKWcsJOqEEDJOZBSpgB3yp3d4R6h0PyKUN7TuBY11cBzQwBk9ZL0mapv2on1rDXAOxWkL2lyhyKufoqMFmza6Jwy_nbPlLi-zPR-cfYxIvu7s6MyHaik2SRqpWCXqv-sNL287WQ</recordid><startdate>20190716</startdate><enddate>20190716</enddate><creator>Vignotto, Edoardo</creator><creator>Engelke, Sebastian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190716</creationdate><title>Extreme Value Theory for Open Set Classification -- GPD and GEV Classifiers</title><author>Vignotto, Edoardo ; Engelke, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20978536373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computer simulation</topic><topic>Extreme value theory</topic><topic>Extreme values</topic><topic>Normal distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Vignotto, Edoardo</creatorcontrib><creatorcontrib>Engelke, Sebastian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vignotto, Edoardo</au><au>Engelke, Sebastian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Extreme Value Theory for Open Set Classification -- GPD and GEV Classifiers</atitle><jtitle>arXiv.org</jtitle><date>2019-07-16</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Classification tasks usually assume that all possible classes are present during the training phase. This is restrictive if the algorithm is used over a long time and possibly encounters samples from unknown classes. The recently introduced extreme value machine, a classifier motivated by extreme value theory, addresses this problem and achieves competitive performance in specific cases. We show that this algorithm can fail when the geometries of known and unknown classes differ. To overcome this problem, we propose two new algorithms relying on approximations from extreme value theory. We show the effectiveness of our classifiers in simulations and on the LETTER and MNIST data sets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2097853637 |
source | Free E- Journals |
subjects | Algorithms Classification Classifiers Computer simulation Extreme value theory Extreme values Normal distribution |
title | Extreme Value Theory for Open Set Classification -- GPD and GEV Classifiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Extreme%20Value%20Theory%20for%20Open%20Set%20Classification%20--%20GPD%20and%20GEV%20Classifiers&rft.jtitle=arXiv.org&rft.au=Vignotto,%20Edoardo&rft.date=2019-07-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2097853637%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2097853637&rft_id=info:pmid/&rfr_iscdi=true |