Extreme Value Theory for Open Set Classification -- GPD and GEV Classifiers

Classification tasks usually assume that all possible classes are present during the training phase. This is restrictive if the algorithm is used over a long time and possibly encounters samples from unknown classes. The recently introduced extreme value machine, a classifier motivated by extreme va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-07
Hauptverfasser: Vignotto, Edoardo, Engelke, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Vignotto, Edoardo
Engelke, Sebastian
description Classification tasks usually assume that all possible classes are present during the training phase. This is restrictive if the algorithm is used over a long time and possibly encounters samples from unknown classes. The recently introduced extreme value machine, a classifier motivated by extreme value theory, addresses this problem and achieves competitive performance in specific cases. We show that this algorithm can fail when the geometries of known and unknown classes differ. To overcome this problem, we propose two new algorithms relying on approximations from extreme value theory. We show the effectiveness of our classifiers in simulations and on the LETTER and MNIST data sets.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2097853637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2097853637</sourcerecordid><originalsourceid>FETCH-proquest_journals_20978536373</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwDsTE_jjXWsFBwdK1BL3FlprU3BT07XUQZ6czfGfCAqnUiqdrKWcsJOqEEDJOZBSpgB3yp3d4R6h0PyKUN7TuBY11cBzQwBk9ZL0mapv2on1rDXAOxWkL2lyhyKufoqMFmza6Jwy_nbPlLi-zPR-cfYxIvu7s6MyHaik2SRqpWCXqv-sNL287WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2097853637</pqid></control><display><type>article</type><title>Extreme Value Theory for Open Set Classification -- GPD and GEV Classifiers</title><source>Free E- Journals</source><creator>Vignotto, Edoardo ; Engelke, Sebastian</creator><creatorcontrib>Vignotto, Edoardo ; Engelke, Sebastian</creatorcontrib><description>Classification tasks usually assume that all possible classes are present during the training phase. This is restrictive if the algorithm is used over a long time and possibly encounters samples from unknown classes. The recently introduced extreme value machine, a classifier motivated by extreme value theory, addresses this problem and achieves competitive performance in specific cases. We show that this algorithm can fail when the geometries of known and unknown classes differ. To overcome this problem, we propose two new algorithms relying on approximations from extreme value theory. We show the effectiveness of our classifiers in simulations and on the LETTER and MNIST data sets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Classification ; Classifiers ; Computer simulation ; Extreme value theory ; Extreme values ; Normal distribution</subject><ispartof>arXiv.org, 2019-07</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Vignotto, Edoardo</creatorcontrib><creatorcontrib>Engelke, Sebastian</creatorcontrib><title>Extreme Value Theory for Open Set Classification -- GPD and GEV Classifiers</title><title>arXiv.org</title><description>Classification tasks usually assume that all possible classes are present during the training phase. This is restrictive if the algorithm is used over a long time and possibly encounters samples from unknown classes. The recently introduced extreme value machine, a classifier motivated by extreme value theory, addresses this problem and achieves competitive performance in specific cases. We show that this algorithm can fail when the geometries of known and unknown classes differ. To overcome this problem, we propose two new algorithms relying on approximations from extreme value theory. We show the effectiveness of our classifiers in simulations and on the LETTER and MNIST data sets.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computer simulation</subject><subject>Extreme value theory</subject><subject>Extreme values</subject><subject>Normal distribution</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwDsTE_jjXWsFBwdK1BL3FlprU3BT07XUQZ6czfGfCAqnUiqdrKWcsJOqEEDJOZBSpgB3yp3d4R6h0PyKUN7TuBY11cBzQwBk9ZL0mapv2on1rDXAOxWkL2lyhyKufoqMFmza6Jwy_nbPlLi-zPR-cfYxIvu7s6MyHaik2SRqpWCXqv-sNL287WQ</recordid><startdate>20190716</startdate><enddate>20190716</enddate><creator>Vignotto, Edoardo</creator><creator>Engelke, Sebastian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190716</creationdate><title>Extreme Value Theory for Open Set Classification -- GPD and GEV Classifiers</title><author>Vignotto, Edoardo ; Engelke, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20978536373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computer simulation</topic><topic>Extreme value theory</topic><topic>Extreme values</topic><topic>Normal distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Vignotto, Edoardo</creatorcontrib><creatorcontrib>Engelke, Sebastian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vignotto, Edoardo</au><au>Engelke, Sebastian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Extreme Value Theory for Open Set Classification -- GPD and GEV Classifiers</atitle><jtitle>arXiv.org</jtitle><date>2019-07-16</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Classification tasks usually assume that all possible classes are present during the training phase. This is restrictive if the algorithm is used over a long time and possibly encounters samples from unknown classes. The recently introduced extreme value machine, a classifier motivated by extreme value theory, addresses this problem and achieves competitive performance in specific cases. We show that this algorithm can fail when the geometries of known and unknown classes differ. To overcome this problem, we propose two new algorithms relying on approximations from extreme value theory. We show the effectiveness of our classifiers in simulations and on the LETTER and MNIST data sets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2097853637
source Free E- Journals
subjects Algorithms
Classification
Classifiers
Computer simulation
Extreme value theory
Extreme values
Normal distribution
title Extreme Value Theory for Open Set Classification -- GPD and GEV Classifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Extreme%20Value%20Theory%20for%20Open%20Set%20Classification%20--%20GPD%20and%20GEV%20Classifiers&rft.jtitle=arXiv.org&rft.au=Vignotto,%20Edoardo&rft.date=2019-07-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2097853637%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2097853637&rft_id=info:pmid/&rfr_iscdi=true