BIG DATA ANALYTICS FOR EARLY DIAGNOSIS OF AMYOTROPHIC LATERAL SCLEROSIS (ALS)

OBJECTIVES: Analyze a large claims database to explore if early predictors of ALS can be identified and potentially shorten the diagnosis timeline. The average delay in ALS diagnosis is one year after the appearance of first symptom, which can be detrimental as it delays initiating approved treatmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Value in health 2017-05, Vol.20 (5), p.A318
Hauptverfasser: Grabowsky, T, Shukla, O, Kasoji, M, Merrill, C, Agnese, W, Atassi, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page A318
container_title Value in health
container_volume 20
creator Grabowsky, T
Shukla, O
Kasoji, M
Merrill, C
Agnese, W
Atassi, N
description OBJECTIVES: Analyze a large claims database to explore if early predictors of ALS can be identified and potentially shorten the diagnosis timeline. The average delay in ALS diagnosis is one year after the appearance of first symptom, which can be detrimental as it delays initiating approved treatments and may preclude patients from enrolling in clinical trials. METHODS: The Truven MarketScanli database, containing patient-level claims for 170+ million patients, was used without any code pre-selection for this analysis. A mutual information (MI) measure was used to quantify the statistical relevance of every code in Market-Scan to a future ALS diagnosis in four US states. Codes included: diagnosis codes, procedure codes, medications, provider types, and care facility types. An ensemble of classifiers developed employing machine learning techniques was applied to optimize the selection and ranking of ALS diagnosis predictors. We looked for predictors within the following time brackets: 3,6,9,12,18,24,36,48, and 60 months before the initial ALS diagnosis. RESULTS: The ALS ICD-9 diagnosis code identified 12,332 ALS patients with an average of 4.4 years of claims history. ALS patients: average age 60 years ± 14 years; 58% male, and 25% had a prescription claim for riluzole. The top differentiating diagnoses more common in ALS group compared to overall population were: non- traumatic joint disorders (-60 months), connective tissue diseases (-60 months), skin disorders (-48 months), fatigue (-36 months), lower respiratory diseases (-24 months), gastrointestinal disorders (-18 months) and other nervous system disorders (-12 months). CONCLUSIONS: This study suggests 5 years before ALS diagnosis, patients may be presenting with symptoms suggestive of connective tissue disorders, skin disorders, and nonspecific neurological complaints. Next steps of this project are to validate these findings in national dataset, optimize the algorithm differentiating ALS patients prior to diagnosis, and further characterize early predictors of ALS.
doi_str_mv 10.1016/j.jval.2017.05.005
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2097661440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2097661440</sourcerecordid><originalsourceid>FETCH-proquest_journals_20976614403</originalsourceid><addsrcrecordid>eNqNirFuwjAUAK2qlUopP9DpSV3oEPMcx0kZX0MSLBmMbC-ZEAMdoqgpCeH7iyo-gOlOumPsTSAXKNJFw5vLoeUxioyj4ojqgU2EipMoyaR8vDouPyOJQj2zl2FoEDGVsZqwzZeuYEWBgLZk6qBzD6V1UJAzNaw0VVvrtQdbAm1qG5zdrXUOhkLhyIDPTeH-hzkZ__HKnr4P7XCc3Thl72UR8nX023en8Tic90039j_XtI9xmaWpSBKU911_1H89NQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2097661440</pqid></control><display><type>article</type><title>BIG DATA ANALYTICS FOR EARLY DIAGNOSIS OF AMYOTROPHIC LATERAL SCLEROSIS (ALS)</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Grabowsky, T ; Shukla, O ; Kasoji, M ; Merrill, C ; Agnese, W ; Atassi, N</creator><creatorcontrib>Grabowsky, T ; Shukla, O ; Kasoji, M ; Merrill, C ; Agnese, W ; Atassi, N</creatorcontrib><description>OBJECTIVES: Analyze a large claims database to explore if early predictors of ALS can be identified and potentially shorten the diagnosis timeline. The average delay in ALS diagnosis is one year after the appearance of first symptom, which can be detrimental as it delays initiating approved treatments and may preclude patients from enrolling in clinical trials. METHODS: The Truven MarketScanli database, containing patient-level claims for 170+ million patients, was used without any code pre-selection for this analysis. A mutual information (MI) measure was used to quantify the statistical relevance of every code in Market-Scan to a future ALS diagnosis in four US states. Codes included: diagnosis codes, procedure codes, medications, provider types, and care facility types. An ensemble of classifiers developed employing machine learning techniques was applied to optimize the selection and ranking of ALS diagnosis predictors. We looked for predictors within the following time brackets: 3,6,9,12,18,24,36,48, and 60 months before the initial ALS diagnosis. RESULTS: The ALS ICD-9 diagnosis code identified 12,332 ALS patients with an average of 4.4 years of claims history. ALS patients: average age 60 years ± 14 years; 58% male, and 25% had a prescription claim for riluzole. The top differentiating diagnoses more common in ALS group compared to overall population were: non- traumatic joint disorders (-60 months), connective tissue diseases (-60 months), skin disorders (-48 months), fatigue (-36 months), lower respiratory diseases (-24 months), gastrointestinal disorders (-18 months) and other nervous system disorders (-12 months). CONCLUSIONS: This study suggests 5 years before ALS diagnosis, patients may be presenting with symptoms suggestive of connective tissue disorders, skin disorders, and nonspecific neurological complaints. Next steps of this project are to validate these findings in national dataset, optimize the algorithm differentiating ALS patients prior to diagnosis, and further characterize early predictors of ALS.</description><identifier>ISSN: 1098-3015</identifier><identifier>EISSN: 1524-4733</identifier><identifier>DOI: 10.1016/j.jval.2017.05.005</identifier><language>eng</language><publisher>Lawrenceville: Elsevier Science Ltd</publisher><subject>Amyotrophic lateral sclerosis ; Averages ; Big Data ; Central nervous system ; Clinical research ; Clinical trials ; Complaints ; Connective tissue diseases ; Data processing ; Diagnosis ; Fatigue ; Gastrointestinal diseases ; Gastrointestinal disorders ; Learning algorithms ; Medical diagnosis ; Nervous system ; Neurological diseases ; Neurological disorders ; Ratings &amp; rankings ; Respiratory diseases ; Skin diseases ; Skin disorders</subject><ispartof>Value in health, 2017-05, Vol.20 (5), p.A318</ispartof><rights>Copyright Elsevier Science Ltd. May 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,30976</link.rule.ids></links><search><creatorcontrib>Grabowsky, T</creatorcontrib><creatorcontrib>Shukla, O</creatorcontrib><creatorcontrib>Kasoji, M</creatorcontrib><creatorcontrib>Merrill, C</creatorcontrib><creatorcontrib>Agnese, W</creatorcontrib><creatorcontrib>Atassi, N</creatorcontrib><title>BIG DATA ANALYTICS FOR EARLY DIAGNOSIS OF AMYOTROPHIC LATERAL SCLEROSIS (ALS)</title><title>Value in health</title><description>OBJECTIVES: Analyze a large claims database to explore if early predictors of ALS can be identified and potentially shorten the diagnosis timeline. The average delay in ALS diagnosis is one year after the appearance of first symptom, which can be detrimental as it delays initiating approved treatments and may preclude patients from enrolling in clinical trials. METHODS: The Truven MarketScanli database, containing patient-level claims for 170+ million patients, was used without any code pre-selection for this analysis. A mutual information (MI) measure was used to quantify the statistical relevance of every code in Market-Scan to a future ALS diagnosis in four US states. Codes included: diagnosis codes, procedure codes, medications, provider types, and care facility types. An ensemble of classifiers developed employing machine learning techniques was applied to optimize the selection and ranking of ALS diagnosis predictors. We looked for predictors within the following time brackets: 3,6,9,12,18,24,36,48, and 60 months before the initial ALS diagnosis. RESULTS: The ALS ICD-9 diagnosis code identified 12,332 ALS patients with an average of 4.4 years of claims history. ALS patients: average age 60 years ± 14 years; 58% male, and 25% had a prescription claim for riluzole. The top differentiating diagnoses more common in ALS group compared to overall population were: non- traumatic joint disorders (-60 months), connective tissue diseases (-60 months), skin disorders (-48 months), fatigue (-36 months), lower respiratory diseases (-24 months), gastrointestinal disorders (-18 months) and other nervous system disorders (-12 months). CONCLUSIONS: This study suggests 5 years before ALS diagnosis, patients may be presenting with symptoms suggestive of connective tissue disorders, skin disorders, and nonspecific neurological complaints. Next steps of this project are to validate these findings in national dataset, optimize the algorithm differentiating ALS patients prior to diagnosis, and further characterize early predictors of ALS.</description><subject>Amyotrophic lateral sclerosis</subject><subject>Averages</subject><subject>Big Data</subject><subject>Central nervous system</subject><subject>Clinical research</subject><subject>Clinical trials</subject><subject>Complaints</subject><subject>Connective tissue diseases</subject><subject>Data processing</subject><subject>Diagnosis</subject><subject>Fatigue</subject><subject>Gastrointestinal diseases</subject><subject>Gastrointestinal disorders</subject><subject>Learning algorithms</subject><subject>Medical diagnosis</subject><subject>Nervous system</subject><subject>Neurological diseases</subject><subject>Neurological disorders</subject><subject>Ratings &amp; rankings</subject><subject>Respiratory diseases</subject><subject>Skin diseases</subject><subject>Skin disorders</subject><issn>1098-3015</issn><issn>1524-4733</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNqNirFuwjAUAK2qlUopP9DpSV3oEPMcx0kZX0MSLBmMbC-ZEAMdoqgpCeH7iyo-gOlOumPsTSAXKNJFw5vLoeUxioyj4ojqgU2EipMoyaR8vDouPyOJQj2zl2FoEDGVsZqwzZeuYEWBgLZk6qBzD6V1UJAzNaw0VVvrtQdbAm1qG5zdrXUOhkLhyIDPTeH-hzkZ__HKnr4P7XCc3Thl72UR8nX023en8Tic90039j_XtI9xmaWpSBKU911_1H89NQ</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Grabowsky, T</creator><creator>Shukla, O</creator><creator>Kasoji, M</creator><creator>Merrill, C</creator><creator>Agnese, W</creator><creator>Atassi, N</creator><general>Elsevier Science Ltd</general><scope>7QJ</scope></search><sort><creationdate>20170501</creationdate><title>BIG DATA ANALYTICS FOR EARLY DIAGNOSIS OF AMYOTROPHIC LATERAL SCLEROSIS (ALS)</title><author>Grabowsky, T ; Shukla, O ; Kasoji, M ; Merrill, C ; Agnese, W ; Atassi, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20976614403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amyotrophic lateral sclerosis</topic><topic>Averages</topic><topic>Big Data</topic><topic>Central nervous system</topic><topic>Clinical research</topic><topic>Clinical trials</topic><topic>Complaints</topic><topic>Connective tissue diseases</topic><topic>Data processing</topic><topic>Diagnosis</topic><topic>Fatigue</topic><topic>Gastrointestinal diseases</topic><topic>Gastrointestinal disorders</topic><topic>Learning algorithms</topic><topic>Medical diagnosis</topic><topic>Nervous system</topic><topic>Neurological diseases</topic><topic>Neurological disorders</topic><topic>Ratings &amp; rankings</topic><topic>Respiratory diseases</topic><topic>Skin diseases</topic><topic>Skin disorders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grabowsky, T</creatorcontrib><creatorcontrib>Shukla, O</creatorcontrib><creatorcontrib>Kasoji, M</creatorcontrib><creatorcontrib>Merrill, C</creatorcontrib><creatorcontrib>Agnese, W</creatorcontrib><creatorcontrib>Atassi, N</creatorcontrib><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><jtitle>Value in health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grabowsky, T</au><au>Shukla, O</au><au>Kasoji, M</au><au>Merrill, C</au><au>Agnese, W</au><au>Atassi, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BIG DATA ANALYTICS FOR EARLY DIAGNOSIS OF AMYOTROPHIC LATERAL SCLEROSIS (ALS)</atitle><jtitle>Value in health</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>20</volume><issue>5</issue><spage>A318</spage><pages>A318-</pages><issn>1098-3015</issn><eissn>1524-4733</eissn><abstract>OBJECTIVES: Analyze a large claims database to explore if early predictors of ALS can be identified and potentially shorten the diagnosis timeline. The average delay in ALS diagnosis is one year after the appearance of first symptom, which can be detrimental as it delays initiating approved treatments and may preclude patients from enrolling in clinical trials. METHODS: The Truven MarketScanli database, containing patient-level claims for 170+ million patients, was used without any code pre-selection for this analysis. A mutual information (MI) measure was used to quantify the statistical relevance of every code in Market-Scan to a future ALS diagnosis in four US states. Codes included: diagnosis codes, procedure codes, medications, provider types, and care facility types. An ensemble of classifiers developed employing machine learning techniques was applied to optimize the selection and ranking of ALS diagnosis predictors. We looked for predictors within the following time brackets: 3,6,9,12,18,24,36,48, and 60 months before the initial ALS diagnosis. RESULTS: The ALS ICD-9 diagnosis code identified 12,332 ALS patients with an average of 4.4 years of claims history. ALS patients: average age 60 years ± 14 years; 58% male, and 25% had a prescription claim for riluzole. The top differentiating diagnoses more common in ALS group compared to overall population were: non- traumatic joint disorders (-60 months), connective tissue diseases (-60 months), skin disorders (-48 months), fatigue (-36 months), lower respiratory diseases (-24 months), gastrointestinal disorders (-18 months) and other nervous system disorders (-12 months). CONCLUSIONS: This study suggests 5 years before ALS diagnosis, patients may be presenting with symptoms suggestive of connective tissue disorders, skin disorders, and nonspecific neurological complaints. Next steps of this project are to validate these findings in national dataset, optimize the algorithm differentiating ALS patients prior to diagnosis, and further characterize early predictors of ALS.</abstract><cop>Lawrenceville</cop><pub>Elsevier Science Ltd</pub><doi>10.1016/j.jval.2017.05.005</doi></addata></record>
fulltext fulltext
identifier ISSN: 1098-3015
ispartof Value in health, 2017-05, Vol.20 (5), p.A318
issn 1098-3015
1524-4733
language eng
recordid cdi_proquest_journals_2097661440
source Applied Social Sciences Index & Abstracts (ASSIA); Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Amyotrophic lateral sclerosis
Averages
Big Data
Central nervous system
Clinical research
Clinical trials
Complaints
Connective tissue diseases
Data processing
Diagnosis
Fatigue
Gastrointestinal diseases
Gastrointestinal disorders
Learning algorithms
Medical diagnosis
Nervous system
Neurological diseases
Neurological disorders
Ratings & rankings
Respiratory diseases
Skin diseases
Skin disorders
title BIG DATA ANALYTICS FOR EARLY DIAGNOSIS OF AMYOTROPHIC LATERAL SCLEROSIS (ALS)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BIG%20DATA%20ANALYTICS%20FOR%20EARLY%20DIAGNOSIS%20OF%20AMYOTROPHIC%20LATERAL%20SCLEROSIS%20(ALS)&rft.jtitle=Value%20in%20health&rft.au=Grabowsky,%20T&rft.date=2017-05-01&rft.volume=20&rft.issue=5&rft.spage=A318&rft.pages=A318-&rft.issn=1098-3015&rft.eissn=1524-4733&rft_id=info:doi/10.1016/j.jval.2017.05.005&rft_dat=%3Cproquest%3E2097661440%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2097661440&rft_id=info:pmid/&rfr_iscdi=true