Classes of Matroids Closed Under Minors and Principal Extensions
This work studies the classes of matroids that are closed under minors, addition of coloops and principal extensions. To any matroid M in such a class a matroid M ° is constructed such that it contains M as a minor, has all proper minors in the class and violates Zhang- Yeung inequality. When the cl...
Gespeichert in:
Veröffentlicht in: | Combinatorica (Budapest. 1981) 2018-08, Vol.38 (4), p.935-954 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 954 |
---|---|
container_issue | 4 |
container_start_page | 935 |
container_title | Combinatorica (Budapest. 1981) |
container_volume | 38 |
creator | Matus, Frantisek |
description | This work studies the classes of matroids that are closed under minors, addition of coloops and principal extensions. To any matroid
M
in such a class a matroid
M
° is constructed such that it contains
M
as a minor, has all proper minors in the class and violates Zhang- Yeung inequality. When the class enjoys the inequality the matroid
M
° becomes an excluded minor. An analogous assertion was known before for the linear matroids over any infinite field in connection with Ingleton inequality. The result is applied to the classes of multilinear, algebraic and almost entropic matroids. In particular, the class of almost entropic matroids has infinitely many excluded minors. |
doi_str_mv | 10.1007/s00493-017-3534-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2097639158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729115156</galeid><sourcerecordid>A729115156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-54118fc82d92723db1277d2ffbb0f3296fcd692b5dbef760373711e9f8cf6ae23</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4G7A9dScZDKZ7CylXqBFF3YdMpOkpEyTmkzBvr0pI7iSLA6E_zuXD6F7wDPAmD8mjCtBSwy8pIxW5ekCTaCioqwFkEs0wQSLUtQNvUY3Ke0wxg0FNkFPi16lZFIRbLFWQwxOp2LRh2R0sfHaxGLtfIipUF4XH9H5zh1UXyy_B-OTCz7doiur-mTufusUbZ6Xn4vXcvX-8raYr8qOMjaUrAJobNcQLQgnVLdAONfE2rbFlhJR207XgrRMt8byGlNOOYARtulsrQyhU_Qw9j3E8HU0aZC7cIw-j5T5NF5TAazJqdmY2qreSOdtGKLq8tNm77rgjXX5f86JAGDA6gzACHQxpBSNlYfo9iqeJGB5NitHszKblWez8pQZMjIpZ_3WxL9V_od-AF53eu0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2097639158</pqid></control><display><type>article</type><title>Classes of Matroids Closed Under Minors and Principal Extensions</title><source>Springer Nature - Complete Springer Journals</source><creator>Matus, Frantisek</creator><creatorcontrib>Matus, Frantisek</creatorcontrib><description>This work studies the classes of matroids that are closed under minors, addition of coloops and principal extensions. To any matroid
M
in such a class a matroid
M
° is constructed such that it contains
M
as a minor, has all proper minors in the class and violates Zhang- Yeung inequality. When the class enjoys the inequality the matroid
M
° becomes an excluded minor. An analogous assertion was known before for the linear matroids over any infinite field in connection with Ingleton inequality. The result is applied to the classes of multilinear, algebraic and almost entropic matroids. In particular, the class of almost entropic matroids has infinitely many excluded minors.</description><identifier>ISSN: 0209-9683</identifier><identifier>EISSN: 1439-6912</identifier><identifier>DOI: 10.1007/s00493-017-3534-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Combinatorics ; Inequality ; Mathematics ; Mathematics and Statistics</subject><ispartof>Combinatorica (Budapest. 1981), 2018-08, Vol.38 (4), p.935-954</ispartof><rights>János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-54118fc82d92723db1277d2ffbb0f3296fcd692b5dbef760373711e9f8cf6ae23</citedby><cites>FETCH-LOGICAL-c355t-54118fc82d92723db1277d2ffbb0f3296fcd692b5dbef760373711e9f8cf6ae23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00493-017-3534-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00493-017-3534-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Matus, Frantisek</creatorcontrib><title>Classes of Matroids Closed Under Minors and Principal Extensions</title><title>Combinatorica (Budapest. 1981)</title><addtitle>Combinatorica</addtitle><description>This work studies the classes of matroids that are closed under minors, addition of coloops and principal extensions. To any matroid
M
in such a class a matroid
M
° is constructed such that it contains
M
as a minor, has all proper minors in the class and violates Zhang- Yeung inequality. When the class enjoys the inequality the matroid
M
° becomes an excluded minor. An analogous assertion was known before for the linear matroids over any infinite field in connection with Ingleton inequality. The result is applied to the classes of multilinear, algebraic and almost entropic matroids. In particular, the class of almost entropic matroids has infinitely many excluded minors.</description><subject>Combinatorics</subject><subject>Inequality</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0209-9683</issn><issn>1439-6912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsP4G7A9dScZDKZ7CylXqBFF3YdMpOkpEyTmkzBvr0pI7iSLA6E_zuXD6F7wDPAmD8mjCtBSwy8pIxW5ekCTaCioqwFkEs0wQSLUtQNvUY3Ke0wxg0FNkFPi16lZFIRbLFWQwxOp2LRh2R0sfHaxGLtfIipUF4XH9H5zh1UXyy_B-OTCz7doiur-mTufusUbZ6Xn4vXcvX-8raYr8qOMjaUrAJobNcQLQgnVLdAONfE2rbFlhJR207XgrRMt8byGlNOOYARtulsrQyhU_Qw9j3E8HU0aZC7cIw-j5T5NF5TAazJqdmY2qreSOdtGKLq8tNm77rgjXX5f86JAGDA6gzACHQxpBSNlYfo9iqeJGB5NitHszKblWez8pQZMjIpZ_3WxL9V_od-AF53eu0</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Matus, Frantisek</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180801</creationdate><title>Classes of Matroids Closed Under Minors and Principal Extensions</title><author>Matus, Frantisek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-54118fc82d92723db1277d2ffbb0f3296fcd692b5dbef760373711e9f8cf6ae23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Combinatorics</topic><topic>Inequality</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matus, Frantisek</creatorcontrib><collection>CrossRef</collection><jtitle>Combinatorica (Budapest. 1981)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matus, Frantisek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classes of Matroids Closed Under Minors and Principal Extensions</atitle><jtitle>Combinatorica (Budapest. 1981)</jtitle><stitle>Combinatorica</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>38</volume><issue>4</issue><spage>935</spage><epage>954</epage><pages>935-954</pages><issn>0209-9683</issn><eissn>1439-6912</eissn><abstract>This work studies the classes of matroids that are closed under minors, addition of coloops and principal extensions. To any matroid
M
in such a class a matroid
M
° is constructed such that it contains
M
as a minor, has all proper minors in the class and violates Zhang- Yeung inequality. When the class enjoys the inequality the matroid
M
° becomes an excluded minor. An analogous assertion was known before for the linear matroids over any infinite field in connection with Ingleton inequality. The result is applied to the classes of multilinear, algebraic and almost entropic matroids. In particular, the class of almost entropic matroids has infinitely many excluded minors.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00493-017-3534-y</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0209-9683 |
ispartof | Combinatorica (Budapest. 1981), 2018-08, Vol.38 (4), p.935-954 |
issn | 0209-9683 1439-6912 |
language | eng |
recordid | cdi_proquest_journals_2097639158 |
source | Springer Nature - Complete Springer Journals |
subjects | Combinatorics Inequality Mathematics Mathematics and Statistics |
title | Classes of Matroids Closed Under Minors and Principal Extensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classes%20of%20Matroids%20Closed%20Under%20Minors%20and%20Principal%20Extensions&rft.jtitle=Combinatorica%20(Budapest.%201981)&rft.au=Matus,%20Frantisek&rft.date=2018-08-01&rft.volume=38&rft.issue=4&rft.spage=935&rft.epage=954&rft.pages=935-954&rft.issn=0209-9683&rft.eissn=1439-6912&rft_id=info:doi/10.1007/s00493-017-3534-y&rft_dat=%3Cgale_proqu%3EA729115156%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2097639158&rft_id=info:pmid/&rft_galeid=A729115156&rfr_iscdi=true |