Semi-supervised regression: A recent review

Nowadays, Semi-Supervised Learning lies at the core of the Machine Learning field trying to effectively exploit unlabeled data as much as possible, together with a small amount of labeled data aiming to improve the predictive performance. Depending on the nature of the output class, Semi-Supervised...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2018-01, Vol.35 (2), p.1483-1500
Hauptverfasser: Kostopoulos, Georgios, Karlos, Stamatis, Kotsiantis, Sotiris, Ragos, Omiros
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays, Semi-Supervised Learning lies at the core of the Machine Learning field trying to effectively exploit unlabeled data as much as possible, together with a small amount of labeled data aiming to improve the predictive performance. Depending on the nature of the output class, Semi-Supervised Classification and Semi-Supervised Regression constitute the basic components of Semi-Supervised Learning. Various studies deal with the implementation of Semi-Supervised Classification techniques in many real world problems over the last two decades in contrast with Semi-Supervised Regression, which is deemed to be a more general and slightly touched case. This survey aims to provide a detailed review of Semi-Supervised Regression methods and implemented algorithms in recent years. Our in-depth study reveals the relatively few studies that deal with this specific problem. Moreover, we seek to classify these methods by proposing a schema and categorizing all the related methods that have been developed in recent years according to specific criteria.
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-169689