From Solid‐State Structure and Dynamics to Crystal Engineering

The investigation of the factors responsible for the stability of the diverse crystal forms that a given molecule can adopt in the solid state (polymorphs, hydrates, cocrystals, etc.) requires an appreciation of the relationship between static and dynamic behavior of atoms and molecules about equili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of inorganic chemistry 2018-08, Vol.2018 (32), p.3597-3605
Hauptverfasser: Braga, Dario, Grepioni, Fabrizia, Maini, Lucia, d'Agostino, Simone
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3605
container_issue 32
container_start_page 3597
container_title European journal of inorganic chemistry
container_volume 2018
creator Braga, Dario
Grepioni, Fabrizia
Maini, Lucia
d'Agostino, Simone
description The investigation of the factors responsible for the stability of the diverse crystal forms that a given molecule can adopt in the solid state (polymorphs, hydrates, cocrystals, etc.) requires an appreciation of the relationship between static and dynamic behavior of atoms and molecules about equilibrium and far from equilibrium positions in the crystal structure. This is particularly relevant when dealing with molecules that are structurally nonrigid at ambient conditions in other media (solution, gas phase). The ease of motion of molecules in molecular crystals depends on the distribution of first neighboring molecules and on the network of intermolecular interactions, which are, in turn, also responsible for the relative thermodynamic stability of solid phases. The knowledge of the intermolecular interactions and of their interplay with the ionic charges commonly present in inorganic, coordination polymers and organometallic compounds is indispensable the application of crystal engineering strategies in the inorganic chemistry area. This microreview article describes, with numerous examples coming mainly from the authors' work, the scientific route that has led from early studies on dynamical processes taking place in the solid state to the design and preparation of novel molecular aggregates involving, inter alia, hydrogen bonded organometallic molecules, charged coordination complexes and metal organic frameworks. The use of solvent‐free mechanochemical mixing of reactants as a method of choice for preparing supramolecular aggregates and hybrid organic–inorganic cocrystals will be discussed. This microreview highlights the scientific journey that has led us through time from early studies of the dynamical processes occurring in the solid state to the design, preparation, and characterization of novel crystalline materials with a purpose, namely a journey from crystallography to crystal engineering.
doi_str_mv 10.1002/ejic.201800234
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2097442012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2097442012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3834-69f878119df75f32df44cdf419f7f89b9f005a19133fdf4278c6a89a4d7031963</originalsourceid><addsrcrecordid>eNqFULtOwzAUtRBIlMLKbIk55frRxN5AoYWiSgyF2TKOXblKk2InQtn4BL6RL8FVEYws96Xz0D0IXRKYEAB6bTfeTCgQkRbGj9CIgJQZ5IIep5kznhHJxSk6i3EDAAxYPkI389Bu8aqtffX18bnqdGfxqgu96fpgsW4qfDc0eutNxF2LyzDETtd41qx9Y23wzfocnThdR3vx08foZT57Lh-y5dP9orxdZoaJZJ1LJwpBiKxcMXWMVo5zkwqRrnBCvkoHMNVEEsZcOtNCmFwLqXlVACMyZ2N0ddDdhfatt7FTm7YPTbJUFGTBefqcJtTkgDKhjTFYp3bBb3UYFAG1T0ntU1K_KSWCPBDefW2Hf9Bq9rgo_7jfr89rDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2097442012</pqid></control><display><type>article</type><title>From Solid‐State Structure and Dynamics to Crystal Engineering</title><source>Access via Wiley Online Library</source><creator>Braga, Dario ; Grepioni, Fabrizia ; Maini, Lucia ; d'Agostino, Simone</creator><creatorcontrib>Braga, Dario ; Grepioni, Fabrizia ; Maini, Lucia ; d'Agostino, Simone</creatorcontrib><description>The investigation of the factors responsible for the stability of the diverse crystal forms that a given molecule can adopt in the solid state (polymorphs, hydrates, cocrystals, etc.) requires an appreciation of the relationship between static and dynamic behavior of atoms and molecules about equilibrium and far from equilibrium positions in the crystal structure. This is particularly relevant when dealing with molecules that are structurally nonrigid at ambient conditions in other media (solution, gas phase). The ease of motion of molecules in molecular crystals depends on the distribution of first neighboring molecules and on the network of intermolecular interactions, which are, in turn, also responsible for the relative thermodynamic stability of solid phases. The knowledge of the intermolecular interactions and of their interplay with the ionic charges commonly present in inorganic, coordination polymers and organometallic compounds is indispensable the application of crystal engineering strategies in the inorganic chemistry area. This microreview article describes, with numerous examples coming mainly from the authors' work, the scientific route that has led from early studies on dynamical processes taking place in the solid state to the design and preparation of novel molecular aggregates involving, inter alia, hydrogen bonded organometallic molecules, charged coordination complexes and metal organic frameworks. The use of solvent‐free mechanochemical mixing of reactants as a method of choice for preparing supramolecular aggregates and hybrid organic–inorganic cocrystals will be discussed. This microreview highlights the scientific journey that has led us through time from early studies of the dynamical processes occurring in the solid state to the design, preparation, and characterization of novel crystalline materials with a purpose, namely a journey from crystallography to crystal engineering.</description><identifier>ISSN: 1434-1948</identifier><identifier>EISSN: 1099-0682</identifier><identifier>DOI: 10.1002/ejic.201800234</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aggregates ; Chemical bonds ; Coordination compounds ; Coordination modes ; Coordination polymers ; Crystal engineering ; Crystal structure ; Dynamic processes ; Dynamic structural analysis ; Hydrates ; Hydrogen storage ; Inorganic chemistry ; Ionic cocrystals ; Mechanochemistry ; Metal-organic frameworks ; Organic chemistry ; Organic–inorganic hybrid composites ; Organometallic compounds ; Solid phases ; Solid state ; Stability</subject><ispartof>European journal of inorganic chemistry, 2018-08, Vol.2018 (32), p.3597-3605</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3834-69f878119df75f32df44cdf419f7f89b9f005a19133fdf4278c6a89a4d7031963</citedby><cites>FETCH-LOGICAL-c3834-69f878119df75f32df44cdf419f7f89b9f005a19133fdf4278c6a89a4d7031963</cites><orcidid>0000-0003-3895-0979 ; 0000-0002-0703-2617 ; 0000-0003-3065-5860 ; 0000-0003-4162-4779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fejic.201800234$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fejic.201800234$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Braga, Dario</creatorcontrib><creatorcontrib>Grepioni, Fabrizia</creatorcontrib><creatorcontrib>Maini, Lucia</creatorcontrib><creatorcontrib>d'Agostino, Simone</creatorcontrib><title>From Solid‐State Structure and Dynamics to Crystal Engineering</title><title>European journal of inorganic chemistry</title><description>The investigation of the factors responsible for the stability of the diverse crystal forms that a given molecule can adopt in the solid state (polymorphs, hydrates, cocrystals, etc.) requires an appreciation of the relationship between static and dynamic behavior of atoms and molecules about equilibrium and far from equilibrium positions in the crystal structure. This is particularly relevant when dealing with molecules that are structurally nonrigid at ambient conditions in other media (solution, gas phase). The ease of motion of molecules in molecular crystals depends on the distribution of first neighboring molecules and on the network of intermolecular interactions, which are, in turn, also responsible for the relative thermodynamic stability of solid phases. The knowledge of the intermolecular interactions and of their interplay with the ionic charges commonly present in inorganic, coordination polymers and organometallic compounds is indispensable the application of crystal engineering strategies in the inorganic chemistry area. This microreview article describes, with numerous examples coming mainly from the authors' work, the scientific route that has led from early studies on dynamical processes taking place in the solid state to the design and preparation of novel molecular aggregates involving, inter alia, hydrogen bonded organometallic molecules, charged coordination complexes and metal organic frameworks. The use of solvent‐free mechanochemical mixing of reactants as a method of choice for preparing supramolecular aggregates and hybrid organic–inorganic cocrystals will be discussed. This microreview highlights the scientific journey that has led us through time from early studies of the dynamical processes occurring in the solid state to the design, preparation, and characterization of novel crystalline materials with a purpose, namely a journey from crystallography to crystal engineering.</description><subject>Aggregates</subject><subject>Chemical bonds</subject><subject>Coordination compounds</subject><subject>Coordination modes</subject><subject>Coordination polymers</subject><subject>Crystal engineering</subject><subject>Crystal structure</subject><subject>Dynamic processes</subject><subject>Dynamic structural analysis</subject><subject>Hydrates</subject><subject>Hydrogen storage</subject><subject>Inorganic chemistry</subject><subject>Ionic cocrystals</subject><subject>Mechanochemistry</subject><subject>Metal-organic frameworks</subject><subject>Organic chemistry</subject><subject>Organic–inorganic hybrid composites</subject><subject>Organometallic compounds</subject><subject>Solid phases</subject><subject>Solid state</subject><subject>Stability</subject><issn>1434-1948</issn><issn>1099-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFULtOwzAUtRBIlMLKbIk55frRxN5AoYWiSgyF2TKOXblKk2InQtn4BL6RL8FVEYws96Xz0D0IXRKYEAB6bTfeTCgQkRbGj9CIgJQZ5IIep5kznhHJxSk6i3EDAAxYPkI389Bu8aqtffX18bnqdGfxqgu96fpgsW4qfDc0eutNxF2LyzDETtd41qx9Y23wzfocnThdR3vx08foZT57Lh-y5dP9orxdZoaJZJ1LJwpBiKxcMXWMVo5zkwqRrnBCvkoHMNVEEsZcOtNCmFwLqXlVACMyZ2N0ddDdhfatt7FTm7YPTbJUFGTBefqcJtTkgDKhjTFYp3bBb3UYFAG1T0ntU1K_KSWCPBDefW2Hf9Bq9rgo_7jfr89rDA</recordid><startdate>20180831</startdate><enddate>20180831</enddate><creator>Braga, Dario</creator><creator>Grepioni, Fabrizia</creator><creator>Maini, Lucia</creator><creator>d'Agostino, Simone</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3895-0979</orcidid><orcidid>https://orcid.org/0000-0002-0703-2617</orcidid><orcidid>https://orcid.org/0000-0003-3065-5860</orcidid><orcidid>https://orcid.org/0000-0003-4162-4779</orcidid></search><sort><creationdate>20180831</creationdate><title>From Solid‐State Structure and Dynamics to Crystal Engineering</title><author>Braga, Dario ; Grepioni, Fabrizia ; Maini, Lucia ; d'Agostino, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3834-69f878119df75f32df44cdf419f7f89b9f005a19133fdf4278c6a89a4d7031963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aggregates</topic><topic>Chemical bonds</topic><topic>Coordination compounds</topic><topic>Coordination modes</topic><topic>Coordination polymers</topic><topic>Crystal engineering</topic><topic>Crystal structure</topic><topic>Dynamic processes</topic><topic>Dynamic structural analysis</topic><topic>Hydrates</topic><topic>Hydrogen storage</topic><topic>Inorganic chemistry</topic><topic>Ionic cocrystals</topic><topic>Mechanochemistry</topic><topic>Metal-organic frameworks</topic><topic>Organic chemistry</topic><topic>Organic–inorganic hybrid composites</topic><topic>Organometallic compounds</topic><topic>Solid phases</topic><topic>Solid state</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braga, Dario</creatorcontrib><creatorcontrib>Grepioni, Fabrizia</creatorcontrib><creatorcontrib>Maini, Lucia</creatorcontrib><creatorcontrib>d'Agostino, Simone</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>European journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braga, Dario</au><au>Grepioni, Fabrizia</au><au>Maini, Lucia</au><au>d'Agostino, Simone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Solid‐State Structure and Dynamics to Crystal Engineering</atitle><jtitle>European journal of inorganic chemistry</jtitle><date>2018-08-31</date><risdate>2018</risdate><volume>2018</volume><issue>32</issue><spage>3597</spage><epage>3605</epage><pages>3597-3605</pages><issn>1434-1948</issn><eissn>1099-0682</eissn><abstract>The investigation of the factors responsible for the stability of the diverse crystal forms that a given molecule can adopt in the solid state (polymorphs, hydrates, cocrystals, etc.) requires an appreciation of the relationship between static and dynamic behavior of atoms and molecules about equilibrium and far from equilibrium positions in the crystal structure. This is particularly relevant when dealing with molecules that are structurally nonrigid at ambient conditions in other media (solution, gas phase). The ease of motion of molecules in molecular crystals depends on the distribution of first neighboring molecules and on the network of intermolecular interactions, which are, in turn, also responsible for the relative thermodynamic stability of solid phases. The knowledge of the intermolecular interactions and of their interplay with the ionic charges commonly present in inorganic, coordination polymers and organometallic compounds is indispensable the application of crystal engineering strategies in the inorganic chemistry area. This microreview article describes, with numerous examples coming mainly from the authors' work, the scientific route that has led from early studies on dynamical processes taking place in the solid state to the design and preparation of novel molecular aggregates involving, inter alia, hydrogen bonded organometallic molecules, charged coordination complexes and metal organic frameworks. The use of solvent‐free mechanochemical mixing of reactants as a method of choice for preparing supramolecular aggregates and hybrid organic–inorganic cocrystals will be discussed. This microreview highlights the scientific journey that has led us through time from early studies of the dynamical processes occurring in the solid state to the design, preparation, and characterization of novel crystalline materials with a purpose, namely a journey from crystallography to crystal engineering.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ejic.201800234</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3895-0979</orcidid><orcidid>https://orcid.org/0000-0002-0703-2617</orcidid><orcidid>https://orcid.org/0000-0003-3065-5860</orcidid><orcidid>https://orcid.org/0000-0003-4162-4779</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1434-1948
ispartof European journal of inorganic chemistry, 2018-08, Vol.2018 (32), p.3597-3605
issn 1434-1948
1099-0682
language eng
recordid cdi_proquest_journals_2097442012
source Access via Wiley Online Library
subjects Aggregates
Chemical bonds
Coordination compounds
Coordination modes
Coordination polymers
Crystal engineering
Crystal structure
Dynamic processes
Dynamic structural analysis
Hydrates
Hydrogen storage
Inorganic chemistry
Ionic cocrystals
Mechanochemistry
Metal-organic frameworks
Organic chemistry
Organic–inorganic hybrid composites
Organometallic compounds
Solid phases
Solid state
Stability
title From Solid‐State Structure and Dynamics to Crystal Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Solid%E2%80%90State%20Structure%20and%20Dynamics%20to%20Crystal%20Engineering&rft.jtitle=European%20journal%20of%20inorganic%20chemistry&rft.au=Braga,%20Dario&rft.date=2018-08-31&rft.volume=2018&rft.issue=32&rft.spage=3597&rft.epage=3605&rft.pages=3597-3605&rft.issn=1434-1948&rft.eissn=1099-0682&rft_id=info:doi/10.1002/ejic.201800234&rft_dat=%3Cproquest_cross%3E2097442012%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2097442012&rft_id=info:pmid/&rfr_iscdi=true