A convolutional neural networks denoising approach for salt and pepper noise
The salt and pepper noise, especially the one with extremely high percentage of impulses , brings a significant challenge to image denoising. In this paper, we propose a non-local switching filter convolutional neural network denoising algorithm, named NLSF-CNN, for salt and pepper noise. As its nam...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2019-11, Vol.78 (21), p.30707-30721 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30721 |
---|---|
container_issue | 21 |
container_start_page | 30707 |
container_title | Multimedia tools and applications |
container_volume | 78 |
creator | Fu, Bo Zhao, Xiaoyang Li, Yi Wang, Xianghai Ren, Yonggong |
description | The salt and pepper noise, especially the one with extremely high percentage of impulses
,
brings a significant challenge to image denoising. In this paper, we propose a non-local switching filter convolutional neural network denoising algorithm, named NLSF-CNN, for salt and pepper noise. As its name suggested, our NLSF-CNN consists of two steps, i.e., a NLSF processing step and a CNN training step. First, we develop a NLSF pre-processing step for noisy images using non-local information. Then
,
the pre-processed images are divided into patches and used for CNN training, leading to a CNN denoising model for future noisy images. We conduct a number of experiments to evaluate the effectiveness of NLSF-CNN. Experimental results show that NLSF-CNN outperforms the state-of-the-art denoising algorithms with a few training images. |
doi_str_mv | 10.1007/s11042-018-6521-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2097281391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2097281391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-db0ac1aedaa92d0d24f0f7c0581861eafba98d4ba530a8dee9d68b6cc9f159df3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcB19F701e6HAZ1hAE3ug5pHmPH2tSkVfz3ZqzgytW5i-8cLh8hlwjXCFDdRETIOQMUrCw4svyILLCoMlZVHI_TnQlgVQF4Ss5i3ANgwvIF2a6o9v2H76ax9b3qaG-n8BPjpw-vkRrb-za2_Y6qYQhe6RfqfKBRdSNVvaGDHQYb6AGy5-TEqS7ai99ckue726f1hm0f7x_Wqy3TGZYjMw0ojcoapWpuwPDcgas0FAJFiVa5RtXC5I0qMlDCWFubUjSl1rXDojYuW5KreTc99D7ZOMq9n0L6PkoOdcUFZjUmCmdKBx9jsE4OoX1T4UsiyIM0OUuTSZo8SJN56vC5ExPb72z4W_6_9A1qi3DS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2097281391</pqid></control><display><type>article</type><title>A convolutional neural networks denoising approach for salt and pepper noise</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fu, Bo ; Zhao, Xiaoyang ; Li, Yi ; Wang, Xianghai ; Ren, Yonggong</creator><creatorcontrib>Fu, Bo ; Zhao, Xiaoyang ; Li, Yi ; Wang, Xianghai ; Ren, Yonggong</creatorcontrib><description>The salt and pepper noise, especially the one with extremely high percentage of impulses
,
brings a significant challenge to image denoising. In this paper, we propose a non-local switching filter convolutional neural network denoising algorithm, named NLSF-CNN, for salt and pepper noise. As its name suggested, our NLSF-CNN consists of two steps, i.e., a NLSF processing step and a CNN training step. First, we develop a NLSF pre-processing step for noisy images using non-local information. Then
,
the pre-processed images are divided into patches and used for CNN training, leading to a CNN denoising model for future noisy images. We conduct a number of experiments to evaluate the effectiveness of NLSF-CNN. Experimental results show that NLSF-CNN outperforms the state-of-the-art denoising algorithms with a few training images.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-018-6521-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial neural networks ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Multimedia Information Systems ; Neural networks ; Noise ; Noise reduction ; Special Purpose and Application-Based Systems ; Switching theory ; Training</subject><ispartof>Multimedia tools and applications, 2019-11, Vol.78 (21), p.30707-30721</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-db0ac1aedaa92d0d24f0f7c0581861eafba98d4ba530a8dee9d68b6cc9f159df3</citedby><cites>FETCH-LOGICAL-c316t-db0ac1aedaa92d0d24f0f7c0581861eafba98d4ba530a8dee9d68b6cc9f159df3</cites><orcidid>0000-0001-7030-821X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-018-6521-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-018-6521-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Fu, Bo</creatorcontrib><creatorcontrib>Zhao, Xiaoyang</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Wang, Xianghai</creatorcontrib><creatorcontrib>Ren, Yonggong</creatorcontrib><title>A convolutional neural networks denoising approach for salt and pepper noise</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>The salt and pepper noise, especially the one with extremely high percentage of impulses
,
brings a significant challenge to image denoising. In this paper, we propose a non-local switching filter convolutional neural network denoising algorithm, named NLSF-CNN, for salt and pepper noise. As its name suggested, our NLSF-CNN consists of two steps, i.e., a NLSF processing step and a CNN training step. First, we develop a NLSF pre-processing step for noisy images using non-local information. Then
,
the pre-processed images are divided into patches and used for CNN training, leading to a CNN denoising model for future noisy images. We conduct a number of experiments to evaluate the effectiveness of NLSF-CNN. Experimental results show that NLSF-CNN outperforms the state-of-the-art denoising algorithms with a few training images.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Switching theory</subject><subject>Training</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcB19F701e6HAZ1hAE3ug5pHmPH2tSkVfz3ZqzgytW5i-8cLh8hlwjXCFDdRETIOQMUrCw4svyILLCoMlZVHI_TnQlgVQF4Ss5i3ANgwvIF2a6o9v2H76ax9b3qaG-n8BPjpw-vkRrb-za2_Y6qYQhe6RfqfKBRdSNVvaGDHQYb6AGy5-TEqS7ai99ckue726f1hm0f7x_Wqy3TGZYjMw0ojcoapWpuwPDcgas0FAJFiVa5RtXC5I0qMlDCWFubUjSl1rXDojYuW5KreTc99D7ZOMq9n0L6PkoOdcUFZjUmCmdKBx9jsE4OoX1T4UsiyIM0OUuTSZo8SJN56vC5ExPb72z4W_6_9A1qi3DS</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Fu, Bo</creator><creator>Zhao, Xiaoyang</creator><creator>Li, Yi</creator><creator>Wang, Xianghai</creator><creator>Ren, Yonggong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7030-821X</orcidid></search><sort><creationdate>20191101</creationdate><title>A convolutional neural networks denoising approach for salt and pepper noise</title><author>Fu, Bo ; Zhao, Xiaoyang ; Li, Yi ; Wang, Xianghai ; Ren, Yonggong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-db0ac1aedaa92d0d24f0f7c0581861eafba98d4ba530a8dee9d68b6cc9f159df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Switching theory</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Bo</creatorcontrib><creatorcontrib>Zhao, Xiaoyang</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Wang, Xianghai</creatorcontrib><creatorcontrib>Ren, Yonggong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Bo</au><au>Zhao, Xiaoyang</au><au>Li, Yi</au><au>Wang, Xianghai</au><au>Ren, Yonggong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A convolutional neural networks denoising approach for salt and pepper noise</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>78</volume><issue>21</issue><spage>30707</spage><epage>30721</epage><pages>30707-30721</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>The salt and pepper noise, especially the one with extremely high percentage of impulses
,
brings a significant challenge to image denoising. In this paper, we propose a non-local switching filter convolutional neural network denoising algorithm, named NLSF-CNN, for salt and pepper noise. As its name suggested, our NLSF-CNN consists of two steps, i.e., a NLSF processing step and a CNN training step. First, we develop a NLSF pre-processing step for noisy images using non-local information. Then
,
the pre-processed images are divided into patches and used for CNN training, leading to a CNN denoising model for future noisy images. We conduct a number of experiments to evaluate the effectiveness of NLSF-CNN. Experimental results show that NLSF-CNN outperforms the state-of-the-art denoising algorithms with a few training images.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-018-6521-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7030-821X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2019-11, Vol.78 (21), p.30707-30721 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2097281391 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial neural networks Computer Communication Networks Computer Science Data Structures and Information Theory Multimedia Information Systems Neural networks Noise Noise reduction Special Purpose and Application-Based Systems Switching theory Training |
title | A convolutional neural networks denoising approach for salt and pepper noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20convolutional%20neural%20networks%20denoising%20approach%20for%20salt%20and%20pepper%20noise&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Fu,%20Bo&rft.date=2019-11-01&rft.volume=78&rft.issue=21&rft.spage=30707&rft.epage=30721&rft.pages=30707-30721&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-018-6521-4&rft_dat=%3Cproquest_cross%3E2097281391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2097281391&rft_id=info:pmid/&rfr_iscdi=true |