A bioinspired structured graphene surface with tunable wetting and high wearable properties for efficient fog collection
Inspired by the fog harvesting ability of the spider net and the interphase wetting surface of Namib desert beetles, we designed a kind of special bioinspired hybrid wetting surface on a Cu mesh by combining polydimethylsiloxane (PDMS) and graphene (G). A surface containing hydrophobic and superhydr...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2018-08, Vol.1 (34), p.16127-16137 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16137 |
---|---|
container_issue | 34 |
container_start_page | 16127 |
container_title | Nanoscale |
container_volume | 1 |
creator | Song, Yun-yun Liu, Yan Jiang, Hao-bo Li, Shu-yi Kaya, Cigdem Stegmaier, Thomas Han, Zhi-wu Ren, Lu-quan |
description | Inspired by the fog harvesting ability of the spider net and the interphase wetting surface of Namib desert beetles, we designed a kind of special bioinspired hybrid wetting surface on a Cu mesh by combining polydimethylsiloxane (PDMS) and graphene (G). A surface containing hydrophobic and superhydrophobic areas is prepared by a combination of laser etching and ultrasonic vibration. Thus, this as-prepared hybrid wetting surface can quickly drive tiny water droplets toward more wettable regions, which makes a great contribution to the improvement of collection efficiency. Moreover, the PDMS/G surface not only is tolerant to many stresses such as excellent anti-corrosion ability, anti-UV exposure and oil contamination, but also shows self-healing simply by burning the worn areas, which thus endows the surface with tunable-wettability change between flame treatment and abrasive wear. This study offers a novel insight into the design of burned healed materials with interphase wettability that may enhance the fog collection efficiency in engineering liquid harvesting equipment and realizes renewable materials
in situ
cheaply and rapidly by processes that can be easily scaled and automated.
We have successfully designed a special bioinspired hybrid wetting surface on a copper mesh with tunable wetting for fog collection. |
doi_str_mv | 10.1039/c8nr04109a |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2096914663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2096914663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-95d1f4c027cbb84af048806600cb9fc69e2e33e14374bddab339ad6dc28508b13</originalsourceid><addsrcrecordid>eNpd0d9rFDEQB_BQKv2lL31XAr6IcDrZ5LLJ43FoFYpCqc9Lkp3cpexlt0kW639v2mtP8CkzmQ_DwJeQSwafGHD92amYQDDQ5oicNSBgwXnbHB9qKU7Jec53AFJzyU_IKQfG2iVbnpGHFbVhDDFPIWFPc0mzK_NjuUlm2mJEmufkjUP6O5QtLXM0dqgNlhLihprY023YbOuHSU-TKY0TphIwUz8mit4HFzCW2m2oG4cBXQljfE1eeTNkfPP8XpBfX7_crr8trn9efV-vrheOt7Is9LJnXjhoWmetEsaDUAqkBHBWeyc1Nsg5MsFbYfveWM616WXvGrUEZRm_IB_2e-td9zPm0u1CdjgMJuI4564BpSttVVvp-__o3TinWK-rSkvNhJS8qo975dKYc0LfTSnsTPrTMege8-jW6sfNUx6rit89r5ztDvsDfQmggrd7kLI7TP8Fyv8CA1eRFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2096914663</pqid></control><display><type>article</type><title>A bioinspired structured graphene surface with tunable wetting and high wearable properties for efficient fog collection</title><source>Royal Society Of Chemistry Journals</source><creator>Song, Yun-yun ; Liu, Yan ; Jiang, Hao-bo ; Li, Shu-yi ; Kaya, Cigdem ; Stegmaier, Thomas ; Han, Zhi-wu ; Ren, Lu-quan</creator><creatorcontrib>Song, Yun-yun ; Liu, Yan ; Jiang, Hao-bo ; Li, Shu-yi ; Kaya, Cigdem ; Stegmaier, Thomas ; Han, Zhi-wu ; Ren, Lu-quan</creatorcontrib><description>Inspired by the fog harvesting ability of the spider net and the interphase wetting surface of Namib desert beetles, we designed a kind of special bioinspired hybrid wetting surface on a Cu mesh by combining polydimethylsiloxane (PDMS) and graphene (G). A surface containing hydrophobic and superhydrophobic areas is prepared by a combination of laser etching and ultrasonic vibration. Thus, this as-prepared hybrid wetting surface can quickly drive tiny water droplets toward more wettable regions, which makes a great contribution to the improvement of collection efficiency. Moreover, the PDMS/G surface not only is tolerant to many stresses such as excellent anti-corrosion ability, anti-UV exposure and oil contamination, but also shows self-healing simply by burning the worn areas, which thus endows the surface with tunable-wettability change between flame treatment and abrasive wear. This study offers a novel insight into the design of burned healed materials with interphase wettability that may enhance the fog collection efficiency in engineering liquid harvesting equipment and realizes renewable materials
in situ
cheaply and rapidly by processes that can be easily scaled and automated.
We have successfully designed a special bioinspired hybrid wetting surface on a copper mesh with tunable wetting for fog collection.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr04109a</identifier><identifier>PMID: 30117515</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Abrasive wear ; Beetles ; Biomimetics ; Collection ; Corrosion prevention ; Fog ; Graphene ; Harvesting ; Hydrophobicity ; Laser etching ; Polydimethylsiloxane ; Renewable resources ; Silicone resins ; Ultrasonic vibration ; Water drops ; Wettability ; Wetting</subject><ispartof>Nanoscale, 2018-08, Vol.1 (34), p.16127-16137</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-95d1f4c027cbb84af048806600cb9fc69e2e33e14374bddab339ad6dc28508b13</citedby><cites>FETCH-LOGICAL-c376t-95d1f4c027cbb84af048806600cb9fc69e2e33e14374bddab339ad6dc28508b13</cites><orcidid>0000-0003-1069-7035 ; 0000-0002-2523-997X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30117515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Yun-yun</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Jiang, Hao-bo</creatorcontrib><creatorcontrib>Li, Shu-yi</creatorcontrib><creatorcontrib>Kaya, Cigdem</creatorcontrib><creatorcontrib>Stegmaier, Thomas</creatorcontrib><creatorcontrib>Han, Zhi-wu</creatorcontrib><creatorcontrib>Ren, Lu-quan</creatorcontrib><title>A bioinspired structured graphene surface with tunable wetting and high wearable properties for efficient fog collection</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Inspired by the fog harvesting ability of the spider net and the interphase wetting surface of Namib desert beetles, we designed a kind of special bioinspired hybrid wetting surface on a Cu mesh by combining polydimethylsiloxane (PDMS) and graphene (G). A surface containing hydrophobic and superhydrophobic areas is prepared by a combination of laser etching and ultrasonic vibration. Thus, this as-prepared hybrid wetting surface can quickly drive tiny water droplets toward more wettable regions, which makes a great contribution to the improvement of collection efficiency. Moreover, the PDMS/G surface not only is tolerant to many stresses such as excellent anti-corrosion ability, anti-UV exposure and oil contamination, but also shows self-healing simply by burning the worn areas, which thus endows the surface with tunable-wettability change between flame treatment and abrasive wear. This study offers a novel insight into the design of burned healed materials with interphase wettability that may enhance the fog collection efficiency in engineering liquid harvesting equipment and realizes renewable materials
in situ
cheaply and rapidly by processes that can be easily scaled and automated.
We have successfully designed a special bioinspired hybrid wetting surface on a copper mesh with tunable wetting for fog collection.</description><subject>Abrasive wear</subject><subject>Beetles</subject><subject>Biomimetics</subject><subject>Collection</subject><subject>Corrosion prevention</subject><subject>Fog</subject><subject>Graphene</subject><subject>Harvesting</subject><subject>Hydrophobicity</subject><subject>Laser etching</subject><subject>Polydimethylsiloxane</subject><subject>Renewable resources</subject><subject>Silicone resins</subject><subject>Ultrasonic vibration</subject><subject>Water drops</subject><subject>Wettability</subject><subject>Wetting</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0d9rFDEQB_BQKv2lL31XAr6IcDrZ5LLJ43FoFYpCqc9Lkp3cpexlt0kW639v2mtP8CkzmQ_DwJeQSwafGHD92amYQDDQ5oicNSBgwXnbHB9qKU7Jec53AFJzyU_IKQfG2iVbnpGHFbVhDDFPIWFPc0mzK_NjuUlm2mJEmufkjUP6O5QtLXM0dqgNlhLihprY023YbOuHSU-TKY0TphIwUz8mit4HFzCW2m2oG4cBXQljfE1eeTNkfPP8XpBfX7_crr8trn9efV-vrheOt7Is9LJnXjhoWmetEsaDUAqkBHBWeyc1Nsg5MsFbYfveWM616WXvGrUEZRm_IB_2e-td9zPm0u1CdjgMJuI4564BpSttVVvp-__o3TinWK-rSkvNhJS8qo975dKYc0LfTSnsTPrTMege8-jW6sfNUx6rit89r5ztDvsDfQmggrd7kLI7TP8Fyv8CA1eRFg</recordid><startdate>20180830</startdate><enddate>20180830</enddate><creator>Song, Yun-yun</creator><creator>Liu, Yan</creator><creator>Jiang, Hao-bo</creator><creator>Li, Shu-yi</creator><creator>Kaya, Cigdem</creator><creator>Stegmaier, Thomas</creator><creator>Han, Zhi-wu</creator><creator>Ren, Lu-quan</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1069-7035</orcidid><orcidid>https://orcid.org/0000-0002-2523-997X</orcidid></search><sort><creationdate>20180830</creationdate><title>A bioinspired structured graphene surface with tunable wetting and high wearable properties for efficient fog collection</title><author>Song, Yun-yun ; Liu, Yan ; Jiang, Hao-bo ; Li, Shu-yi ; Kaya, Cigdem ; Stegmaier, Thomas ; Han, Zhi-wu ; Ren, Lu-quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-95d1f4c027cbb84af048806600cb9fc69e2e33e14374bddab339ad6dc28508b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abrasive wear</topic><topic>Beetles</topic><topic>Biomimetics</topic><topic>Collection</topic><topic>Corrosion prevention</topic><topic>Fog</topic><topic>Graphene</topic><topic>Harvesting</topic><topic>Hydrophobicity</topic><topic>Laser etching</topic><topic>Polydimethylsiloxane</topic><topic>Renewable resources</topic><topic>Silicone resins</topic><topic>Ultrasonic vibration</topic><topic>Water drops</topic><topic>Wettability</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yun-yun</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Jiang, Hao-bo</creatorcontrib><creatorcontrib>Li, Shu-yi</creatorcontrib><creatorcontrib>Kaya, Cigdem</creatorcontrib><creatorcontrib>Stegmaier, Thomas</creatorcontrib><creatorcontrib>Han, Zhi-wu</creatorcontrib><creatorcontrib>Ren, Lu-quan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yun-yun</au><au>Liu, Yan</au><au>Jiang, Hao-bo</au><au>Li, Shu-yi</au><au>Kaya, Cigdem</au><au>Stegmaier, Thomas</au><au>Han, Zhi-wu</au><au>Ren, Lu-quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bioinspired structured graphene surface with tunable wetting and high wearable properties for efficient fog collection</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-08-30</date><risdate>2018</risdate><volume>1</volume><issue>34</issue><spage>16127</spage><epage>16137</epage><pages>16127-16137</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Inspired by the fog harvesting ability of the spider net and the interphase wetting surface of Namib desert beetles, we designed a kind of special bioinspired hybrid wetting surface on a Cu mesh by combining polydimethylsiloxane (PDMS) and graphene (G). A surface containing hydrophobic and superhydrophobic areas is prepared by a combination of laser etching and ultrasonic vibration. Thus, this as-prepared hybrid wetting surface can quickly drive tiny water droplets toward more wettable regions, which makes a great contribution to the improvement of collection efficiency. Moreover, the PDMS/G surface not only is tolerant to many stresses such as excellent anti-corrosion ability, anti-UV exposure and oil contamination, but also shows self-healing simply by burning the worn areas, which thus endows the surface with tunable-wettability change between flame treatment and abrasive wear. This study offers a novel insight into the design of burned healed materials with interphase wettability that may enhance the fog collection efficiency in engineering liquid harvesting equipment and realizes renewable materials
in situ
cheaply and rapidly by processes that can be easily scaled and automated.
We have successfully designed a special bioinspired hybrid wetting surface on a copper mesh with tunable wetting for fog collection.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30117515</pmid><doi>10.1039/c8nr04109a</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1069-7035</orcidid><orcidid>https://orcid.org/0000-0002-2523-997X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2018-08, Vol.1 (34), p.16127-16137 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_journals_2096914663 |
source | Royal Society Of Chemistry Journals |
subjects | Abrasive wear Beetles Biomimetics Collection Corrosion prevention Fog Graphene Harvesting Hydrophobicity Laser etching Polydimethylsiloxane Renewable resources Silicone resins Ultrasonic vibration Water drops Wettability Wetting |
title | A bioinspired structured graphene surface with tunable wetting and high wearable properties for efficient fog collection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bioinspired%20structured%20graphene%20surface%20with%20tunable%20wetting%20and%20high%20wearable%20properties%20for%20efficient%20fog%20collection&rft.jtitle=Nanoscale&rft.au=Song,%20Yun-yun&rft.date=2018-08-30&rft.volume=1&rft.issue=34&rft.spage=16127&rft.epage=16137&rft.pages=16127-16137&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr04109a&rft_dat=%3Cproquest_rsc_p%3E2096914663%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2096914663&rft_id=info:pmid/30117515&rfr_iscdi=true |