A bioinspired structured graphene surface with tunable wetting and high wearable properties for efficient fog collection

Inspired by the fog harvesting ability of the spider net and the interphase wetting surface of Namib desert beetles, we designed a kind of special bioinspired hybrid wetting surface on a Cu mesh by combining polydimethylsiloxane (PDMS) and graphene (G). A surface containing hydrophobic and superhydr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2018-08, Vol.1 (34), p.16127-16137
Hauptverfasser: Song, Yun-yun, Liu, Yan, Jiang, Hao-bo, Li, Shu-yi, Kaya, Cigdem, Stegmaier, Thomas, Han, Zhi-wu, Ren, Lu-quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16137
container_issue 34
container_start_page 16127
container_title Nanoscale
container_volume 1
creator Song, Yun-yun
Liu, Yan
Jiang, Hao-bo
Li, Shu-yi
Kaya, Cigdem
Stegmaier, Thomas
Han, Zhi-wu
Ren, Lu-quan
description Inspired by the fog harvesting ability of the spider net and the interphase wetting surface of Namib desert beetles, we designed a kind of special bioinspired hybrid wetting surface on a Cu mesh by combining polydimethylsiloxane (PDMS) and graphene (G). A surface containing hydrophobic and superhydrophobic areas is prepared by a combination of laser etching and ultrasonic vibration. Thus, this as-prepared hybrid wetting surface can quickly drive tiny water droplets toward more wettable regions, which makes a great contribution to the improvement of collection efficiency. Moreover, the PDMS/G surface not only is tolerant to many stresses such as excellent anti-corrosion ability, anti-UV exposure and oil contamination, but also shows self-healing simply by burning the worn areas, which thus endows the surface with tunable-wettability change between flame treatment and abrasive wear. This study offers a novel insight into the design of burned healed materials with interphase wettability that may enhance the fog collection efficiency in engineering liquid harvesting equipment and realizes renewable materials in situ cheaply and rapidly by processes that can be easily scaled and automated. We have successfully designed a special bioinspired hybrid wetting surface on a copper mesh with tunable wetting for fog collection.
doi_str_mv 10.1039/c8nr04109a
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2096914663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2096914663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-95d1f4c027cbb84af048806600cb9fc69e2e33e14374bddab339ad6dc28508b13</originalsourceid><addsrcrecordid>eNpd0d9rFDEQB_BQKv2lL31XAr6IcDrZ5LLJ43FoFYpCqc9Lkp3cpexlt0kW639v2mtP8CkzmQ_DwJeQSwafGHD92amYQDDQ5oicNSBgwXnbHB9qKU7Jec53AFJzyU_IKQfG2iVbnpGHFbVhDDFPIWFPc0mzK_NjuUlm2mJEmufkjUP6O5QtLXM0dqgNlhLihprY023YbOuHSU-TKY0TphIwUz8mit4HFzCW2m2oG4cBXQljfE1eeTNkfPP8XpBfX7_crr8trn9efV-vrheOt7Is9LJnXjhoWmetEsaDUAqkBHBWeyc1Nsg5MsFbYfveWM616WXvGrUEZRm_IB_2e-td9zPm0u1CdjgMJuI4564BpSttVVvp-__o3TinWK-rSkvNhJS8qo975dKYc0LfTSnsTPrTMege8-jW6sfNUx6rit89r5ztDvsDfQmggrd7kLI7TP8Fyv8CA1eRFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2096914663</pqid></control><display><type>article</type><title>A bioinspired structured graphene surface with tunable wetting and high wearable properties for efficient fog collection</title><source>Royal Society Of Chemistry Journals</source><creator>Song, Yun-yun ; Liu, Yan ; Jiang, Hao-bo ; Li, Shu-yi ; Kaya, Cigdem ; Stegmaier, Thomas ; Han, Zhi-wu ; Ren, Lu-quan</creator><creatorcontrib>Song, Yun-yun ; Liu, Yan ; Jiang, Hao-bo ; Li, Shu-yi ; Kaya, Cigdem ; Stegmaier, Thomas ; Han, Zhi-wu ; Ren, Lu-quan</creatorcontrib><description>Inspired by the fog harvesting ability of the spider net and the interphase wetting surface of Namib desert beetles, we designed a kind of special bioinspired hybrid wetting surface on a Cu mesh by combining polydimethylsiloxane (PDMS) and graphene (G). A surface containing hydrophobic and superhydrophobic areas is prepared by a combination of laser etching and ultrasonic vibration. Thus, this as-prepared hybrid wetting surface can quickly drive tiny water droplets toward more wettable regions, which makes a great contribution to the improvement of collection efficiency. Moreover, the PDMS/G surface not only is tolerant to many stresses such as excellent anti-corrosion ability, anti-UV exposure and oil contamination, but also shows self-healing simply by burning the worn areas, which thus endows the surface with tunable-wettability change between flame treatment and abrasive wear. This study offers a novel insight into the design of burned healed materials with interphase wettability that may enhance the fog collection efficiency in engineering liquid harvesting equipment and realizes renewable materials in situ cheaply and rapidly by processes that can be easily scaled and automated. We have successfully designed a special bioinspired hybrid wetting surface on a copper mesh with tunable wetting for fog collection.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr04109a</identifier><identifier>PMID: 30117515</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Abrasive wear ; Beetles ; Biomimetics ; Collection ; Corrosion prevention ; Fog ; Graphene ; Harvesting ; Hydrophobicity ; Laser etching ; Polydimethylsiloxane ; Renewable resources ; Silicone resins ; Ultrasonic vibration ; Water drops ; Wettability ; Wetting</subject><ispartof>Nanoscale, 2018-08, Vol.1 (34), p.16127-16137</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-95d1f4c027cbb84af048806600cb9fc69e2e33e14374bddab339ad6dc28508b13</citedby><cites>FETCH-LOGICAL-c376t-95d1f4c027cbb84af048806600cb9fc69e2e33e14374bddab339ad6dc28508b13</cites><orcidid>0000-0003-1069-7035 ; 0000-0002-2523-997X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30117515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Yun-yun</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Jiang, Hao-bo</creatorcontrib><creatorcontrib>Li, Shu-yi</creatorcontrib><creatorcontrib>Kaya, Cigdem</creatorcontrib><creatorcontrib>Stegmaier, Thomas</creatorcontrib><creatorcontrib>Han, Zhi-wu</creatorcontrib><creatorcontrib>Ren, Lu-quan</creatorcontrib><title>A bioinspired structured graphene surface with tunable wetting and high wearable properties for efficient fog collection</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Inspired by the fog harvesting ability of the spider net and the interphase wetting surface of Namib desert beetles, we designed a kind of special bioinspired hybrid wetting surface on a Cu mesh by combining polydimethylsiloxane (PDMS) and graphene (G). A surface containing hydrophobic and superhydrophobic areas is prepared by a combination of laser etching and ultrasonic vibration. Thus, this as-prepared hybrid wetting surface can quickly drive tiny water droplets toward more wettable regions, which makes a great contribution to the improvement of collection efficiency. Moreover, the PDMS/G surface not only is tolerant to many stresses such as excellent anti-corrosion ability, anti-UV exposure and oil contamination, but also shows self-healing simply by burning the worn areas, which thus endows the surface with tunable-wettability change between flame treatment and abrasive wear. This study offers a novel insight into the design of burned healed materials with interphase wettability that may enhance the fog collection efficiency in engineering liquid harvesting equipment and realizes renewable materials in situ cheaply and rapidly by processes that can be easily scaled and automated. We have successfully designed a special bioinspired hybrid wetting surface on a copper mesh with tunable wetting for fog collection.</description><subject>Abrasive wear</subject><subject>Beetles</subject><subject>Biomimetics</subject><subject>Collection</subject><subject>Corrosion prevention</subject><subject>Fog</subject><subject>Graphene</subject><subject>Harvesting</subject><subject>Hydrophobicity</subject><subject>Laser etching</subject><subject>Polydimethylsiloxane</subject><subject>Renewable resources</subject><subject>Silicone resins</subject><subject>Ultrasonic vibration</subject><subject>Water drops</subject><subject>Wettability</subject><subject>Wetting</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0d9rFDEQB_BQKv2lL31XAr6IcDrZ5LLJ43FoFYpCqc9Lkp3cpexlt0kW639v2mtP8CkzmQ_DwJeQSwafGHD92amYQDDQ5oicNSBgwXnbHB9qKU7Jec53AFJzyU_IKQfG2iVbnpGHFbVhDDFPIWFPc0mzK_NjuUlm2mJEmufkjUP6O5QtLXM0dqgNlhLihprY023YbOuHSU-TKY0TphIwUz8mit4HFzCW2m2oG4cBXQljfE1eeTNkfPP8XpBfX7_crr8trn9efV-vrheOt7Is9LJnXjhoWmetEsaDUAqkBHBWeyc1Nsg5MsFbYfveWM616WXvGrUEZRm_IB_2e-td9zPm0u1CdjgMJuI4564BpSttVVvp-__o3TinWK-rSkvNhJS8qo975dKYc0LfTSnsTPrTMege8-jW6sfNUx6rit89r5ztDvsDfQmggrd7kLI7TP8Fyv8CA1eRFg</recordid><startdate>20180830</startdate><enddate>20180830</enddate><creator>Song, Yun-yun</creator><creator>Liu, Yan</creator><creator>Jiang, Hao-bo</creator><creator>Li, Shu-yi</creator><creator>Kaya, Cigdem</creator><creator>Stegmaier, Thomas</creator><creator>Han, Zhi-wu</creator><creator>Ren, Lu-quan</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1069-7035</orcidid><orcidid>https://orcid.org/0000-0002-2523-997X</orcidid></search><sort><creationdate>20180830</creationdate><title>A bioinspired structured graphene surface with tunable wetting and high wearable properties for efficient fog collection</title><author>Song, Yun-yun ; Liu, Yan ; Jiang, Hao-bo ; Li, Shu-yi ; Kaya, Cigdem ; Stegmaier, Thomas ; Han, Zhi-wu ; Ren, Lu-quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-95d1f4c027cbb84af048806600cb9fc69e2e33e14374bddab339ad6dc28508b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abrasive wear</topic><topic>Beetles</topic><topic>Biomimetics</topic><topic>Collection</topic><topic>Corrosion prevention</topic><topic>Fog</topic><topic>Graphene</topic><topic>Harvesting</topic><topic>Hydrophobicity</topic><topic>Laser etching</topic><topic>Polydimethylsiloxane</topic><topic>Renewable resources</topic><topic>Silicone resins</topic><topic>Ultrasonic vibration</topic><topic>Water drops</topic><topic>Wettability</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yun-yun</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Jiang, Hao-bo</creatorcontrib><creatorcontrib>Li, Shu-yi</creatorcontrib><creatorcontrib>Kaya, Cigdem</creatorcontrib><creatorcontrib>Stegmaier, Thomas</creatorcontrib><creatorcontrib>Han, Zhi-wu</creatorcontrib><creatorcontrib>Ren, Lu-quan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yun-yun</au><au>Liu, Yan</au><au>Jiang, Hao-bo</au><au>Li, Shu-yi</au><au>Kaya, Cigdem</au><au>Stegmaier, Thomas</au><au>Han, Zhi-wu</au><au>Ren, Lu-quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bioinspired structured graphene surface with tunable wetting and high wearable properties for efficient fog collection</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-08-30</date><risdate>2018</risdate><volume>1</volume><issue>34</issue><spage>16127</spage><epage>16137</epage><pages>16127-16137</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Inspired by the fog harvesting ability of the spider net and the interphase wetting surface of Namib desert beetles, we designed a kind of special bioinspired hybrid wetting surface on a Cu mesh by combining polydimethylsiloxane (PDMS) and graphene (G). A surface containing hydrophobic and superhydrophobic areas is prepared by a combination of laser etching and ultrasonic vibration. Thus, this as-prepared hybrid wetting surface can quickly drive tiny water droplets toward more wettable regions, which makes a great contribution to the improvement of collection efficiency. Moreover, the PDMS/G surface not only is tolerant to many stresses such as excellent anti-corrosion ability, anti-UV exposure and oil contamination, but also shows self-healing simply by burning the worn areas, which thus endows the surface with tunable-wettability change between flame treatment and abrasive wear. This study offers a novel insight into the design of burned healed materials with interphase wettability that may enhance the fog collection efficiency in engineering liquid harvesting equipment and realizes renewable materials in situ cheaply and rapidly by processes that can be easily scaled and automated. We have successfully designed a special bioinspired hybrid wetting surface on a copper mesh with tunable wetting for fog collection.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30117515</pmid><doi>10.1039/c8nr04109a</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1069-7035</orcidid><orcidid>https://orcid.org/0000-0002-2523-997X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2018-08, Vol.1 (34), p.16127-16137
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_journals_2096914663
source Royal Society Of Chemistry Journals
subjects Abrasive wear
Beetles
Biomimetics
Collection
Corrosion prevention
Fog
Graphene
Harvesting
Hydrophobicity
Laser etching
Polydimethylsiloxane
Renewable resources
Silicone resins
Ultrasonic vibration
Water drops
Wettability
Wetting
title A bioinspired structured graphene surface with tunable wetting and high wearable properties for efficient fog collection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bioinspired%20structured%20graphene%20surface%20with%20tunable%20wetting%20and%20high%20wearable%20properties%20for%20efficient%20fog%20collection&rft.jtitle=Nanoscale&rft.au=Song,%20Yun-yun&rft.date=2018-08-30&rft.volume=1&rft.issue=34&rft.spage=16127&rft.epage=16137&rft.pages=16127-16137&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr04109a&rft_dat=%3Cproquest_rsc_p%3E2096914663%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2096914663&rft_id=info:pmid/30117515&rfr_iscdi=true