Stabilized bi-grid projection methods in Finite Elements for the 2D incompressible Navier-Stokes

We introduce a family of bi-grid schemes in finite elements for solving 2D incompressible Navier-Stokes equations in velocity and pressure \((u,p)\). The new schemes are based on projection methods and use two pairs of FEM spaces, a sparse and a fine one. The main computational effort is done on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-08
Hauptverfasser: Abboud, Hyam, Clara Al Kosseifi, Chehab, Jean-Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Abboud, Hyam
Clara Al Kosseifi
Chehab, Jean-Paul
description We introduce a family of bi-grid schemes in finite elements for solving 2D incompressible Navier-Stokes equations in velocity and pressure \((u,p)\). The new schemes are based on projection methods and use two pairs of FEM spaces, a sparse and a fine one. The main computational effort is done on the coarsest velocity space with an implicit and unconditionally time scheme while its correction on the finer velocity space is realized with a simple stabilized semi-implicit scheme whose the lack of stability is compensated by a high mode stabilization procedure; the pressure is updated using the free divergence property. The new schemes are tested on the lid driven cavity up to \(Re=7500\). An enhanced stability is observed as respect to classical semi-implicit methods and an important gain of CPU time is obtained as compared to implicit projection schemes.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2096250882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2096250882</sourcerecordid><originalsourceid>FETCH-proquest_journals_20962508823</originalsourceid><addsrcrecordid>eNqNjcEOwUAQQDcSiQb_MIlzkzVV6ozGyYU7rQ6d2u6ys3Xw9XrwAU7v8F7yBirCJJnH2QJxpKYijdYalytM0yRSl2MoSjb8oQpKju-eK3h619A1sLPQUqhdJcAWcrYcCHaGWrJB4OY8hJoAt729uvbpSYRLQ3Ao3kw-Pgb3IJmo4a0wQtMfx2qW706bfdxfXh1JODeu87ZXZ9TrJaY6yzD5r_oC5KZEzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2096250882</pqid></control><display><type>article</type><title>Stabilized bi-grid projection methods in Finite Elements for the 2D incompressible Navier-Stokes</title><source>Free E- Journals</source><creator>Abboud, Hyam ; Clara Al Kosseifi ; Chehab, Jean-Paul</creator><creatorcontrib>Abboud, Hyam ; Clara Al Kosseifi ; Chehab, Jean-Paul</creatorcontrib><description>We introduce a family of bi-grid schemes in finite elements for solving 2D incompressible Navier-Stokes equations in velocity and pressure \((u,p)\). The new schemes are based on projection methods and use two pairs of FEM spaces, a sparse and a fine one. The main computational effort is done on the coarsest velocity space with an implicit and unconditionally time scheme while its correction on the finer velocity space is realized with a simple stabilized semi-implicit scheme whose the lack of stability is compensated by a high mode stabilization procedure; the pressure is updated using the free divergence property. The new schemes are tested on the lid driven cavity up to \(Re=7500\). An enhanced stability is observed as respect to classical semi-implicit methods and an important gain of CPU time is obtained as compared to implicit projection schemes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computational fluid dynamics ; Divergence ; Finite element method ; Fluid flow ; Implicit methods ; Navier-Stokes equations ; Projection ; Stability</subject><ispartof>arXiv.org, 2018-08</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Abboud, Hyam</creatorcontrib><creatorcontrib>Clara Al Kosseifi</creatorcontrib><creatorcontrib>Chehab, Jean-Paul</creatorcontrib><title>Stabilized bi-grid projection methods in Finite Elements for the 2D incompressible Navier-Stokes</title><title>arXiv.org</title><description>We introduce a family of bi-grid schemes in finite elements for solving 2D incompressible Navier-Stokes equations in velocity and pressure \((u,p)\). The new schemes are based on projection methods and use two pairs of FEM spaces, a sparse and a fine one. The main computational effort is done on the coarsest velocity space with an implicit and unconditionally time scheme while its correction on the finer velocity space is realized with a simple stabilized semi-implicit scheme whose the lack of stability is compensated by a high mode stabilization procedure; the pressure is updated using the free divergence property. The new schemes are tested on the lid driven cavity up to \(Re=7500\). An enhanced stability is observed as respect to classical semi-implicit methods and an important gain of CPU time is obtained as compared to implicit projection schemes.</description><subject>Computational fluid dynamics</subject><subject>Divergence</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Implicit methods</subject><subject>Navier-Stokes equations</subject><subject>Projection</subject><subject>Stability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjcEOwUAQQDcSiQb_MIlzkzVV6ozGyYU7rQ6d2u6ys3Xw9XrwAU7v8F7yBirCJJnH2QJxpKYijdYalytM0yRSl2MoSjb8oQpKju-eK3h619A1sLPQUqhdJcAWcrYcCHaGWrJB4OY8hJoAt729uvbpSYRLQ3Ao3kw-Pgb3IJmo4a0wQtMfx2qW706bfdxfXh1JODeu87ZXZ9TrJaY6yzD5r_oC5KZEzg</recordid><startdate>20180828</startdate><enddate>20180828</enddate><creator>Abboud, Hyam</creator><creator>Clara Al Kosseifi</creator><creator>Chehab, Jean-Paul</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180828</creationdate><title>Stabilized bi-grid projection methods in Finite Elements for the 2D incompressible Navier-Stokes</title><author>Abboud, Hyam ; Clara Al Kosseifi ; Chehab, Jean-Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20962508823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational fluid dynamics</topic><topic>Divergence</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Implicit methods</topic><topic>Navier-Stokes equations</topic><topic>Projection</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Abboud, Hyam</creatorcontrib><creatorcontrib>Clara Al Kosseifi</creatorcontrib><creatorcontrib>Chehab, Jean-Paul</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abboud, Hyam</au><au>Clara Al Kosseifi</au><au>Chehab, Jean-Paul</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stabilized bi-grid projection methods in Finite Elements for the 2D incompressible Navier-Stokes</atitle><jtitle>arXiv.org</jtitle><date>2018-08-28</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We introduce a family of bi-grid schemes in finite elements for solving 2D incompressible Navier-Stokes equations in velocity and pressure \((u,p)\). The new schemes are based on projection methods and use two pairs of FEM spaces, a sparse and a fine one. The main computational effort is done on the coarsest velocity space with an implicit and unconditionally time scheme while its correction on the finer velocity space is realized with a simple stabilized semi-implicit scheme whose the lack of stability is compensated by a high mode stabilization procedure; the pressure is updated using the free divergence property. The new schemes are tested on the lid driven cavity up to \(Re=7500\). An enhanced stability is observed as respect to classical semi-implicit methods and an important gain of CPU time is obtained as compared to implicit projection schemes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2096250882
source Free E- Journals
subjects Computational fluid dynamics
Divergence
Finite element method
Fluid flow
Implicit methods
Navier-Stokes equations
Projection
Stability
title Stabilized bi-grid projection methods in Finite Elements for the 2D incompressible Navier-Stokes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A54%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stabilized%20bi-grid%20projection%20methods%20in%20Finite%20Elements%20for%20the%202D%20incompressible%20Navier-Stokes&rft.jtitle=arXiv.org&rft.au=Abboud,%20Hyam&rft.date=2018-08-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2096250882%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2096250882&rft_id=info:pmid/&rfr_iscdi=true