Comparison of Bayesian and other approaches to the estimation of fatigue crack growth rate from 2D textural features
The fatigue crack growth rate can be explained using features of the surface of a structure. Among other methods, linear regression can be used to explain crack growth velocity. Nonlinear transformations of fracture surface texture features may be useful as explanatory variables. Nonetheless, the nu...
Gespeichert in:
Veröffentlicht in: | Journal of Theoretical and Applied Mechanics (Warsaw) 2017-10, Vol.55 (4), p.1269 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 1269 |
container_title | Journal of Theoretical and Applied Mechanics (Warsaw) |
container_volume | 55 |
creator | Mojzeš, Matej Kukal, Jaromír Lauschmann, Hynek |
description | The fatigue crack growth rate can be explained using features of the surface of a structure. Among other methods, linear regression can be used to explain crack growth velocity. Nonlinear transformations of fracture surface texture features may be useful as explanatory variables. Nonetheless, the number of derived explanatory variables increases very quickly, and it is very important to select only few of the best performing ones and prevent overfitting at the same time. To perform selection of the explanatory variables, it is necessary to assess quality of the given sub-model. We use fractographic data to study performance of different information criteria and statistical tests as means of the sub-model quality measurement. Furthermore, to address overfitting, we provide recommendations based on a cross-validation analysis. Among other conclusions, we suggest the Bayesian Information Criterion, which favours sub-models fitting the data considerably well and does not lose the capability to generalize at the same time. |
doi_str_mv | 10.15632/jtam-pl.55.4.1269 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2095790861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2095790861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c141t-271d987c9ea9a8addcf425eac28c8fa23dc3b54c8d321609d0b35bc4243eb68c3</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EElXpD7CyxDrBz9ReQnlKldjA2po4dpuSxsF2BP17UspqrkZ3HvcgdE1JSWXF2e0uw74YulLKUpSUVfoMzZgUvKg40edoRgXTBdNSXqJFSjtCCFOy0pzMUF6F_QCxTaHHweN7OLjUQo-hb3DIWxcxDEMMYLcu4Rzw1MIu5XYPuT2N-EltRodtBPuJNzF85y2OkB32Mewxe8DZ_eQxQoe9g0m4dIUuPHTJLf7rHH08Pb6vXor12_Pr6m5dWCpoLtiSNlotrXagQUHTWC-YdGCZssoD443ltRRWNZzRiuiG1FzWVjDBXV0py-fo5rR3SvA1Tm-bXRhjP500jGi51ERVdHKxk8vGkFJ03gxxyhcPhhLzB9gcAZuhM1IaYY6A-S_RNnIj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095790861</pqid></control><display><type>article</type><title>Comparison of Bayesian and other approaches to the estimation of fatigue crack growth rate from 2D textural features</title><source>Alma/SFX Local Collection</source><creator>Mojzeš, Matej ; Kukal, Jaromír ; Lauschmann, Hynek</creator><creatorcontrib>Mojzeš, Matej ; Kukal, Jaromír ; Lauschmann, Hynek</creatorcontrib><description>The fatigue crack growth rate can be explained using features of the surface of a structure. Among other methods, linear regression can be used to explain crack growth velocity. Nonlinear transformations of fracture surface texture features may be useful as explanatory variables. Nonetheless, the number of derived explanatory variables increases very quickly, and it is very important to select only few of the best performing ones and prevent overfitting at the same time. To perform selection of the explanatory variables, it is necessary to assess quality of the given sub-model. We use fractographic data to study performance of different information criteria and statistical tests as means of the sub-model quality measurement. Furthermore, to address overfitting, we provide recommendations based on a cross-validation analysis. Among other conclusions, we suggest the Bayesian Information Criterion, which favours sub-models fitting the data considerably well and does not lose the capability to generalize at the same time.</description><identifier>ISSN: 1429-2955</identifier><identifier>EISSN: 2543-6309</identifier><identifier>DOI: 10.15632/jtam-pl.55.4.1269</identifier><language>eng</language><publisher>Warszawa: Polish Society of Theoretical and Allied Mechanics</publisher><subject>Bayesian analysis ; Crack propagation ; Fatigue failure ; Fracture mechanics ; Fracture surfaces ; Growth rate ; Mathematical models ; Quality assessment ; Regression analysis ; Statistical analysis ; Statistical tests ; Surface layers</subject><ispartof>Journal of Theoretical and Applied Mechanics (Warsaw), 2017-10, Vol.55 (4), p.1269</ispartof><rights>Copyright Polish Society of Theoretical and Allied Mechanics Oct 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mojzeš, Matej</creatorcontrib><creatorcontrib>Kukal, Jaromír</creatorcontrib><creatorcontrib>Lauschmann, Hynek</creatorcontrib><title>Comparison of Bayesian and other approaches to the estimation of fatigue crack growth rate from 2D textural features</title><title>Journal of Theoretical and Applied Mechanics (Warsaw)</title><description>The fatigue crack growth rate can be explained using features of the surface of a structure. Among other methods, linear regression can be used to explain crack growth velocity. Nonlinear transformations of fracture surface texture features may be useful as explanatory variables. Nonetheless, the number of derived explanatory variables increases very quickly, and it is very important to select only few of the best performing ones and prevent overfitting at the same time. To perform selection of the explanatory variables, it is necessary to assess quality of the given sub-model. We use fractographic data to study performance of different information criteria and statistical tests as means of the sub-model quality measurement. Furthermore, to address overfitting, we provide recommendations based on a cross-validation analysis. Among other conclusions, we suggest the Bayesian Information Criterion, which favours sub-models fitting the data considerably well and does not lose the capability to generalize at the same time.</description><subject>Bayesian analysis</subject><subject>Crack propagation</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Fracture surfaces</subject><subject>Growth rate</subject><subject>Mathematical models</subject><subject>Quality assessment</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Surface layers</subject><issn>1429-2955</issn><issn>2543-6309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAQRS0EElXpD7CyxDrBz9ReQnlKldjA2po4dpuSxsF2BP17UspqrkZ3HvcgdE1JSWXF2e0uw74YulLKUpSUVfoMzZgUvKg40edoRgXTBdNSXqJFSjtCCFOy0pzMUF6F_QCxTaHHweN7OLjUQo-hb3DIWxcxDEMMYLcu4Rzw1MIu5XYPuT2N-EltRodtBPuJNzF85y2OkB32Mewxe8DZ_eQxQoe9g0m4dIUuPHTJLf7rHH08Pb6vXor12_Pr6m5dWCpoLtiSNlotrXagQUHTWC-YdGCZssoD443ltRRWNZzRiuiG1FzWVjDBXV0py-fo5rR3SvA1Tm-bXRhjP500jGi51ERVdHKxk8vGkFJ03gxxyhcPhhLzB9gcAZuhM1IaYY6A-S_RNnIj</recordid><startdate>20171015</startdate><enddate>20171015</enddate><creator>Mojzeš, Matej</creator><creator>Kukal, Jaromír</creator><creator>Lauschmann, Hynek</creator><general>Polish Society of Theoretical and Allied Mechanics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20171015</creationdate><title>Comparison of Bayesian and other approaches to the estimation of fatigue crack growth rate from 2D textural features</title><author>Mojzeš, Matej ; Kukal, Jaromír ; Lauschmann, Hynek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c141t-271d987c9ea9a8addcf425eac28c8fa23dc3b54c8d321609d0b35bc4243eb68c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayesian analysis</topic><topic>Crack propagation</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Fracture surfaces</topic><topic>Growth rate</topic><topic>Mathematical models</topic><topic>Quality assessment</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Surface layers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mojzeš, Matej</creatorcontrib><creatorcontrib>Kukal, Jaromír</creatorcontrib><creatorcontrib>Lauschmann, Hynek</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of Theoretical and Applied Mechanics (Warsaw)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mojzeš, Matej</au><au>Kukal, Jaromír</au><au>Lauschmann, Hynek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Bayesian and other approaches to the estimation of fatigue crack growth rate from 2D textural features</atitle><jtitle>Journal of Theoretical and Applied Mechanics (Warsaw)</jtitle><date>2017-10-15</date><risdate>2017</risdate><volume>55</volume><issue>4</issue><spage>1269</spage><pages>1269-</pages><issn>1429-2955</issn><eissn>2543-6309</eissn><abstract>The fatigue crack growth rate can be explained using features of the surface of a structure. Among other methods, linear regression can be used to explain crack growth velocity. Nonlinear transformations of fracture surface texture features may be useful as explanatory variables. Nonetheless, the number of derived explanatory variables increases very quickly, and it is very important to select only few of the best performing ones and prevent overfitting at the same time. To perform selection of the explanatory variables, it is necessary to assess quality of the given sub-model. We use fractographic data to study performance of different information criteria and statistical tests as means of the sub-model quality measurement. Furthermore, to address overfitting, we provide recommendations based on a cross-validation analysis. Among other conclusions, we suggest the Bayesian Information Criterion, which favours sub-models fitting the data considerably well and does not lose the capability to generalize at the same time.</abstract><cop>Warszawa</cop><pub>Polish Society of Theoretical and Allied Mechanics</pub><doi>10.15632/jtam-pl.55.4.1269</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1429-2955 |
ispartof | Journal of Theoretical and Applied Mechanics (Warsaw), 2017-10, Vol.55 (4), p.1269 |
issn | 1429-2955 2543-6309 |
language | eng |
recordid | cdi_proquest_journals_2095790861 |
source | Alma/SFX Local Collection |
subjects | Bayesian analysis Crack propagation Fatigue failure Fracture mechanics Fracture surfaces Growth rate Mathematical models Quality assessment Regression analysis Statistical analysis Statistical tests Surface layers |
title | Comparison of Bayesian and other approaches to the estimation of fatigue crack growth rate from 2D textural features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T20%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Bayesian%20and%20other%20approaches%20to%20the%20estimation%20of%20fatigue%20crack%20growth%20rate%20from%202D%20textural%20features&rft.jtitle=Journal%20of%20Theoretical%20and%20Applied%20Mechanics%20(Warsaw)&rft.au=Mojze%C5%A1,%20Matej&rft.date=2017-10-15&rft.volume=55&rft.issue=4&rft.spage=1269&rft.pages=1269-&rft.issn=1429-2955&rft.eissn=2543-6309&rft_id=info:doi/10.15632/jtam-pl.55.4.1269&rft_dat=%3Cproquest_cross%3E2095790861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2095790861&rft_id=info:pmid/&rfr_iscdi=true |