Comparison of Bayesian and other approaches to the estimation of fatigue crack growth rate from 2D textural features

The fatigue crack growth rate can be explained using features of the surface of a structure. Among other methods, linear regression can be used to explain crack growth velocity. Nonlinear transformations of fracture surface texture features may be useful as explanatory variables. Nonetheless, the nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Theoretical and Applied Mechanics (Warsaw) 2017-10, Vol.55 (4), p.1269
Hauptverfasser: Mojzeš, Matej, Kukal, Jaromír, Lauschmann, Hynek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 1269
container_title Journal of Theoretical and Applied Mechanics (Warsaw)
container_volume 55
creator Mojzeš, Matej
Kukal, Jaromír
Lauschmann, Hynek
description The fatigue crack growth rate can be explained using features of the surface of a structure. Among other methods, linear regression can be used to explain crack growth velocity. Nonlinear transformations of fracture surface texture features may be useful as explanatory variables. Nonetheless, the number of derived explanatory variables increases very quickly, and it is very important to select only few of the best performing ones and prevent overfitting at the same time. To perform selection of the explanatory variables, it is necessary to assess quality of the given sub-model. We use fractographic data to study performance of different information criteria and statistical tests as means of the sub-model quality measurement. Furthermore, to address overfitting, we provide recommendations based on a cross-validation analysis. Among other conclusions, we suggest the Bayesian Information Criterion, which favours sub-models fitting the data considerably well and does not lose the capability to generalize at the same time.
doi_str_mv 10.15632/jtam-pl.55.4.1269
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2095790861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2095790861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c141t-271d987c9ea9a8addcf425eac28c8fa23dc3b54c8d321609d0b35bc4243eb68c3</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EElXpD7CyxDrBz9ReQnlKldjA2po4dpuSxsF2BP17UspqrkZ3HvcgdE1JSWXF2e0uw74YulLKUpSUVfoMzZgUvKg40edoRgXTBdNSXqJFSjtCCFOy0pzMUF6F_QCxTaHHweN7OLjUQo-hb3DIWxcxDEMMYLcu4Rzw1MIu5XYPuT2N-EltRodtBPuJNzF85y2OkB32Mewxe8DZ_eQxQoe9g0m4dIUuPHTJLf7rHH08Pb6vXor12_Pr6m5dWCpoLtiSNlotrXagQUHTWC-YdGCZssoD443ltRRWNZzRiuiG1FzWVjDBXV0py-fo5rR3SvA1Tm-bXRhjP500jGi51ERVdHKxk8vGkFJ03gxxyhcPhhLzB9gcAZuhM1IaYY6A-S_RNnIj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095790861</pqid></control><display><type>article</type><title>Comparison of Bayesian and other approaches to the estimation of fatigue crack growth rate from 2D textural features</title><source>Alma/SFX Local Collection</source><creator>Mojzeš, Matej ; Kukal, Jaromír ; Lauschmann, Hynek</creator><creatorcontrib>Mojzeš, Matej ; Kukal, Jaromír ; Lauschmann, Hynek</creatorcontrib><description>The fatigue crack growth rate can be explained using features of the surface of a structure. Among other methods, linear regression can be used to explain crack growth velocity. Nonlinear transformations of fracture surface texture features may be useful as explanatory variables. Nonetheless, the number of derived explanatory variables increases very quickly, and it is very important to select only few of the best performing ones and prevent overfitting at the same time. To perform selection of the explanatory variables, it is necessary to assess quality of the given sub-model. We use fractographic data to study performance of different information criteria and statistical tests as means of the sub-model quality measurement. Furthermore, to address overfitting, we provide recommendations based on a cross-validation analysis. Among other conclusions, we suggest the Bayesian Information Criterion, which favours sub-models fitting the data considerably well and does not lose the capability to generalize at the same time.</description><identifier>ISSN: 1429-2955</identifier><identifier>EISSN: 2543-6309</identifier><identifier>DOI: 10.15632/jtam-pl.55.4.1269</identifier><language>eng</language><publisher>Warszawa: Polish Society of Theoretical and Allied Mechanics</publisher><subject>Bayesian analysis ; Crack propagation ; Fatigue failure ; Fracture mechanics ; Fracture surfaces ; Growth rate ; Mathematical models ; Quality assessment ; Regression analysis ; Statistical analysis ; Statistical tests ; Surface layers</subject><ispartof>Journal of Theoretical and Applied Mechanics (Warsaw), 2017-10, Vol.55 (4), p.1269</ispartof><rights>Copyright Polish Society of Theoretical and Allied Mechanics Oct 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mojzeš, Matej</creatorcontrib><creatorcontrib>Kukal, Jaromír</creatorcontrib><creatorcontrib>Lauschmann, Hynek</creatorcontrib><title>Comparison of Bayesian and other approaches to the estimation of fatigue crack growth rate from 2D textural features</title><title>Journal of Theoretical and Applied Mechanics (Warsaw)</title><description>The fatigue crack growth rate can be explained using features of the surface of a structure. Among other methods, linear regression can be used to explain crack growth velocity. Nonlinear transformations of fracture surface texture features may be useful as explanatory variables. Nonetheless, the number of derived explanatory variables increases very quickly, and it is very important to select only few of the best performing ones and prevent overfitting at the same time. To perform selection of the explanatory variables, it is necessary to assess quality of the given sub-model. We use fractographic data to study performance of different information criteria and statistical tests as means of the sub-model quality measurement. Furthermore, to address overfitting, we provide recommendations based on a cross-validation analysis. Among other conclusions, we suggest the Bayesian Information Criterion, which favours sub-models fitting the data considerably well and does not lose the capability to generalize at the same time.</description><subject>Bayesian analysis</subject><subject>Crack propagation</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Fracture surfaces</subject><subject>Growth rate</subject><subject>Mathematical models</subject><subject>Quality assessment</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Surface layers</subject><issn>1429-2955</issn><issn>2543-6309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAQRS0EElXpD7CyxDrBz9ReQnlKldjA2po4dpuSxsF2BP17UspqrkZ3HvcgdE1JSWXF2e0uw74YulLKUpSUVfoMzZgUvKg40edoRgXTBdNSXqJFSjtCCFOy0pzMUF6F_QCxTaHHweN7OLjUQo-hb3DIWxcxDEMMYLcu4Rzw1MIu5XYPuT2N-EltRodtBPuJNzF85y2OkB32Mewxe8DZ_eQxQoe9g0m4dIUuPHTJLf7rHH08Pb6vXor12_Pr6m5dWCpoLtiSNlotrXagQUHTWC-YdGCZssoD443ltRRWNZzRiuiG1FzWVjDBXV0py-fo5rR3SvA1Tm-bXRhjP500jGi51ERVdHKxk8vGkFJ03gxxyhcPhhLzB9gcAZuhM1IaYY6A-S_RNnIj</recordid><startdate>20171015</startdate><enddate>20171015</enddate><creator>Mojzeš, Matej</creator><creator>Kukal, Jaromír</creator><creator>Lauschmann, Hynek</creator><general>Polish Society of Theoretical and Allied Mechanics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20171015</creationdate><title>Comparison of Bayesian and other approaches to the estimation of fatigue crack growth rate from 2D textural features</title><author>Mojzeš, Matej ; Kukal, Jaromír ; Lauschmann, Hynek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c141t-271d987c9ea9a8addcf425eac28c8fa23dc3b54c8d321609d0b35bc4243eb68c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayesian analysis</topic><topic>Crack propagation</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Fracture surfaces</topic><topic>Growth rate</topic><topic>Mathematical models</topic><topic>Quality assessment</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Surface layers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mojzeš, Matej</creatorcontrib><creatorcontrib>Kukal, Jaromír</creatorcontrib><creatorcontrib>Lauschmann, Hynek</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of Theoretical and Applied Mechanics (Warsaw)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mojzeš, Matej</au><au>Kukal, Jaromír</au><au>Lauschmann, Hynek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Bayesian and other approaches to the estimation of fatigue crack growth rate from 2D textural features</atitle><jtitle>Journal of Theoretical and Applied Mechanics (Warsaw)</jtitle><date>2017-10-15</date><risdate>2017</risdate><volume>55</volume><issue>4</issue><spage>1269</spage><pages>1269-</pages><issn>1429-2955</issn><eissn>2543-6309</eissn><abstract>The fatigue crack growth rate can be explained using features of the surface of a structure. Among other methods, linear regression can be used to explain crack growth velocity. Nonlinear transformations of fracture surface texture features may be useful as explanatory variables. Nonetheless, the number of derived explanatory variables increases very quickly, and it is very important to select only few of the best performing ones and prevent overfitting at the same time. To perform selection of the explanatory variables, it is necessary to assess quality of the given sub-model. We use fractographic data to study performance of different information criteria and statistical tests as means of the sub-model quality measurement. Furthermore, to address overfitting, we provide recommendations based on a cross-validation analysis. Among other conclusions, we suggest the Bayesian Information Criterion, which favours sub-models fitting the data considerably well and does not lose the capability to generalize at the same time.</abstract><cop>Warszawa</cop><pub>Polish Society of Theoretical and Allied Mechanics</pub><doi>10.15632/jtam-pl.55.4.1269</doi></addata></record>
fulltext fulltext
identifier ISSN: 1429-2955
ispartof Journal of Theoretical and Applied Mechanics (Warsaw), 2017-10, Vol.55 (4), p.1269
issn 1429-2955
2543-6309
language eng
recordid cdi_proquest_journals_2095790861
source Alma/SFX Local Collection
subjects Bayesian analysis
Crack propagation
Fatigue failure
Fracture mechanics
Fracture surfaces
Growth rate
Mathematical models
Quality assessment
Regression analysis
Statistical analysis
Statistical tests
Surface layers
title Comparison of Bayesian and other approaches to the estimation of fatigue crack growth rate from 2D textural features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T20%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Bayesian%20and%20other%20approaches%20to%20the%20estimation%20of%20fatigue%20crack%20growth%20rate%20from%202D%20textural%20features&rft.jtitle=Journal%20of%20Theoretical%20and%20Applied%20Mechanics%20(Warsaw)&rft.au=Mojze%C5%A1,%20Matej&rft.date=2017-10-15&rft.volume=55&rft.issue=4&rft.spage=1269&rft.pages=1269-&rft.issn=1429-2955&rft.eissn=2543-6309&rft_id=info:doi/10.15632/jtam-pl.55.4.1269&rft_dat=%3Cproquest_cross%3E2095790861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2095790861&rft_id=info:pmid/&rfr_iscdi=true