Continuity conditions for tensor product Q-Bézier surfaces of degree (m,n)

Based on a kind of Q-Bézier surfaces with shape parameters, the basic properties of the surfaces and the geometric significance of the shape parameters are analyzed. To resolve the problem of shape control and adjustment of composite surfaces, the continuity conditions for Q-Bézier surfaces of degre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computation and applied mathematics 2018-09, Vol.37 (4), p.4237-4258
Hauptverfasser: Hu, Gang, Bo, Cuicui, Qin, Xinqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4258
container_issue 4
container_start_page 4237
container_title Computation and applied mathematics
container_volume 37
creator Hu, Gang
Bo, Cuicui
Qin, Xinqiang
description Based on a kind of Q-Bézier surfaces with shape parameters, the basic properties of the surfaces and the geometric significance of the shape parameters are analyzed. To resolve the problem of shape control and adjustment of composite surfaces, the continuity conditions for Q-Bézier surfaces of degree ( m , n ) are investigated. Taking advantage of the terminal properties of generalized Bernstein basis functions, we derive the conditions of G 1 and G 2 continuity between two adjacent Q-Bézier surfaces. In addition, the specific steps of smooth continuity between Q-Bézier surfaces and the shape adjustment function of shape parameters for composite surfaces are discussed. The modeling examples show that the proposed smooth continuity conditions are not only intuitive and easy to implement, but also greatly enhance the shape adjustability, which provide a useful method for constructing complex surfaces in engineering design.
doi_str_mv 10.1007/s40314-017-0568-0
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2095668450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2095668450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3250-80fdb68750416af8e81f7cd916969433a13db48cb4f1716ffa7c07a9acd73d3f3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWLQP4G7AjYLRm0kmySy1-IcFEXQd0kxSp9ikJplFfSOfwxczpUJX3s3hwjmHez-ETghcEgBxlRhQwjAQgaHhEsMeGhEJZaNQ76MRECBY1tAconFKCyjDAEjNR-hpEnzu_dDndWWC7_rcB58qF2KVrU9FVjF0g8nVC775-f7qbazSEJ02NlXBVZ2dR2urs-WFPz9GB05_JDv-0yP0dnf7OnnA0-f7x8n1FBtaN4AluG7GpWiAEa6dtJI4YbqW8Ja3jFJNaDdj0syYI4Jw57QwIHSrTSdoRx09Qqfb3pByr5LpszXv5XhvTVZ1LSQVjO1c5YHPwaasFmGIvhymamgbziVroLjI1mViSClap1axX-q4VgTUBq7awlUFrtrAVZtMvc2k4vVzG3fN_4d-Aedqeu0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095668450</pqid></control><display><type>article</type><title>Continuity conditions for tensor product Q-Bézier surfaces of degree (m,n)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hu, Gang ; Bo, Cuicui ; Qin, Xinqiang</creator><creatorcontrib>Hu, Gang ; Bo, Cuicui ; Qin, Xinqiang</creatorcontrib><description>Based on a kind of Q-Bézier surfaces with shape parameters, the basic properties of the surfaces and the geometric significance of the shape parameters are analyzed. To resolve the problem of shape control and adjustment of composite surfaces, the continuity conditions for Q-Bézier surfaces of degree ( m , n ) are investigated. Taking advantage of the terminal properties of generalized Bernstein basis functions, we derive the conditions of G 1 and G 2 continuity between two adjacent Q-Bézier surfaces. In addition, the specific steps of smooth continuity between Q-Bézier surfaces and the shape adjustment function of shape parameters for composite surfaces are discussed. The modeling examples show that the proposed smooth continuity conditions are not only intuitive and easy to implement, but also greatly enhance the shape adjustability, which provide a useful method for constructing complex surfaces in engineering design.</description><identifier>ISSN: 0101-8205</identifier><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-017-0568-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Basis functions ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; CONTROL ; DESIGN ; Design engineering ; FUNCTIONS ; GEOMETRY ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; MATHEMATICAL METHODS AND COMPUTING ; Mathematics ; Mathematics and Statistics ; Parameters ; SHAPE ; Shape control ; SIMULATION ; SURFACES ; TENSORS</subject><ispartof>Computation and applied mathematics, 2018-09, Vol.37 (4), p.4237-4258</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3250-80fdb68750416af8e81f7cd916969433a13db48cb4f1716ffa7c07a9acd73d3f3</citedby><cites>FETCH-LOGICAL-c3250-80fdb68750416af8e81f7cd916969433a13db48cb4f1716ffa7c07a9acd73d3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-017-0568-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-017-0568-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22783744$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Gang</creatorcontrib><creatorcontrib>Bo, Cuicui</creatorcontrib><creatorcontrib>Qin, Xinqiang</creatorcontrib><title>Continuity conditions for tensor product Q-Bézier surfaces of degree (m,n)</title><title>Computation and applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>Based on a kind of Q-Bézier surfaces with shape parameters, the basic properties of the surfaces and the geometric significance of the shape parameters are analyzed. To resolve the problem of shape control and adjustment of composite surfaces, the continuity conditions for Q-Bézier surfaces of degree ( m , n ) are investigated. Taking advantage of the terminal properties of generalized Bernstein basis functions, we derive the conditions of G 1 and G 2 continuity between two adjacent Q-Bézier surfaces. In addition, the specific steps of smooth continuity between Q-Bézier surfaces and the shape adjustment function of shape parameters for composite surfaces are discussed. The modeling examples show that the proposed smooth continuity conditions are not only intuitive and easy to implement, but also greatly enhance the shape adjustability, which provide a useful method for constructing complex surfaces in engineering design.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Basis functions</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>CONTROL</subject><subject>DESIGN</subject><subject>Design engineering</subject><subject>FUNCTIONS</subject><subject>GEOMETRY</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameters</subject><subject>SHAPE</subject><subject>Shape control</subject><subject>SIMULATION</subject><subject>SURFACES</subject><subject>TENSORS</subject><issn>0101-8205</issn><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWLQP4G7AjYLRm0kmySy1-IcFEXQd0kxSp9ikJplFfSOfwxczpUJX3s3hwjmHez-ETghcEgBxlRhQwjAQgaHhEsMeGhEJZaNQ76MRECBY1tAconFKCyjDAEjNR-hpEnzu_dDndWWC7_rcB58qF2KVrU9FVjF0g8nVC775-f7qbazSEJ02NlXBVZ2dR2urs-WFPz9GB05_JDv-0yP0dnf7OnnA0-f7x8n1FBtaN4AluG7GpWiAEa6dtJI4YbqW8Ja3jFJNaDdj0syYI4Jw57QwIHSrTSdoRx09Qqfb3pByr5LpszXv5XhvTVZ1LSQVjO1c5YHPwaasFmGIvhymamgbziVroLjI1mViSClap1axX-q4VgTUBq7awlUFrtrAVZtMvc2k4vVzG3fN_4d-Aedqeu0</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Hu, Gang</creator><creator>Bo, Cuicui</creator><creator>Qin, Xinqiang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20180901</creationdate><title>Continuity conditions for tensor product Q-Bézier surfaces of degree (m,n)</title><author>Hu, Gang ; Bo, Cuicui ; Qin, Xinqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3250-80fdb68750416af8e81f7cd916969433a13db48cb4f1716ffa7c07a9acd73d3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Basis functions</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>CONTROL</topic><topic>DESIGN</topic><topic>Design engineering</topic><topic>FUNCTIONS</topic><topic>GEOMETRY</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameters</topic><topic>SHAPE</topic><topic>Shape control</topic><topic>SIMULATION</topic><topic>SURFACES</topic><topic>TENSORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Gang</creatorcontrib><creatorcontrib>Bo, Cuicui</creatorcontrib><creatorcontrib>Qin, Xinqiang</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Computation and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Gang</au><au>Bo, Cuicui</au><au>Qin, Xinqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuity conditions for tensor product Q-Bézier surfaces of degree (m,n)</atitle><jtitle>Computation and applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>37</volume><issue>4</issue><spage>4237</spage><epage>4258</epage><pages>4237-4258</pages><issn>0101-8205</issn><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>Based on a kind of Q-Bézier surfaces with shape parameters, the basic properties of the surfaces and the geometric significance of the shape parameters are analyzed. To resolve the problem of shape control and adjustment of composite surfaces, the continuity conditions for Q-Bézier surfaces of degree ( m , n ) are investigated. Taking advantage of the terminal properties of generalized Bernstein basis functions, we derive the conditions of G 1 and G 2 continuity between two adjacent Q-Bézier surfaces. In addition, the specific steps of smooth continuity between Q-Bézier surfaces and the shape adjustment function of shape parameters for composite surfaces are discussed. The modeling examples show that the proposed smooth continuity conditions are not only intuitive and easy to implement, but also greatly enhance the shape adjustability, which provide a useful method for constructing complex surfaces in engineering design.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-017-0568-0</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0101-8205
ispartof Computation and applied mathematics, 2018-09, Vol.37 (4), p.4237-4258
issn 0101-8205
2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2095668450
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Applied physics
Basis functions
Computational mathematics
Computational Mathematics and Numerical Analysis
CONTROL
DESIGN
Design engineering
FUNCTIONS
GEOMETRY
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
MATHEMATICAL METHODS AND COMPUTING
Mathematics
Mathematics and Statistics
Parameters
SHAPE
Shape control
SIMULATION
SURFACES
TENSORS
title Continuity conditions for tensor product Q-Bézier surfaces of degree (m,n)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A00%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuity%20conditions%20for%20tensor%20product%20Q-B%C3%A9zier%20surfaces%20of%20degree%20(m,n)&rft.jtitle=Computation%20and%20applied%20mathematics&rft.au=Hu,%20Gang&rft.date=2018-09-01&rft.volume=37&rft.issue=4&rft.spage=4237&rft.epage=4258&rft.pages=4237-4258&rft.issn=0101-8205&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-017-0568-0&rft_dat=%3Cproquest_osti_%3E2095668450%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2095668450&rft_id=info:pmid/&rfr_iscdi=true