Lipschitz normal embeddings in the space of matrices

A semi-algebraic subset in R n or C n is naturally equipped with two different metrics, the inner metric and the outer metric. Such a set (or its germ) is called Lipschitz normally embedded if the two metrics are bilipschitz equivalent. In this article we prove Lipschitz normal embeddedness of some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2018-10, Vol.290 (1-2), p.485-507
Hauptverfasser: Kerner, Dmitry, Pedersen, Helge Møller, Ruas, Maria A. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 507
container_issue 1-2
container_start_page 485
container_title Mathematische Zeitschrift
container_volume 290
creator Kerner, Dmitry
Pedersen, Helge Møller
Ruas, Maria A. S.
description A semi-algebraic subset in R n or C n is naturally equipped with two different metrics, the inner metric and the outer metric. Such a set (or its germ) is called Lipschitz normally embedded if the two metrics are bilipschitz equivalent. In this article we prove Lipschitz normal embeddedness of some algebraic subsets of the space of matrices. These include the space of rectangular/(skew-)symmetric/hermitian matrices of rank equal to a given number and their closures, and the upper triangular matrices with determinant 0. (In these cases we establish explicit bilipschitz constants.) We also make a short discussion about generalizing these results to determinantal varieties in real and complex spaces.
doi_str_mv 10.1007/s00209-017-2027-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2095668285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2095668285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-71a1ef4ed1cef2aa8ff6b3a4f924ca8260ac06e45f5f506e8bb0e5be6e1224733</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAc3SSzSbpUYpaYcGLnkM2O2m3dP-YbA_66U1ZwZPMYQbeezPMj5BbDvccQD8kAAErBlwzAUIzeUYWXBaCcSOKc7LIcslKo-UluUppD5BFLRdEVu2Y_K6dvmk_xM4dKHY1Nk3bbxNtezrtkKbReaRDoJ2bYusxXZOL4A4Jb377knw8P72vN6x6e3ldP1bMF1xNTHPHMUhsuMcgnDMhqLpwMqyE9M4IBc6DQlmGXHkwdQ1Y1qiQCyF1USzJ3bx3jMPnEdNk98Mx9vmkzc-WShlhyuzis8vHIaWIwY6x7Vz8shzsCY6d4dgMx57gWJkzYs6k7O23GP82_x_6AT-WZoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095668285</pqid></control><display><type>article</type><title>Lipschitz normal embeddings in the space of matrices</title><source>SpringerLink Journals</source><creator>Kerner, Dmitry ; Pedersen, Helge Møller ; Ruas, Maria A. S.</creator><creatorcontrib>Kerner, Dmitry ; Pedersen, Helge Møller ; Ruas, Maria A. S.</creatorcontrib><description>A semi-algebraic subset in R n or C n is naturally equipped with two different metrics, the inner metric and the outer metric. Such a set (or its germ) is called Lipschitz normally embedded if the two metrics are bilipschitz equivalent. In this article we prove Lipschitz normal embeddedness of some algebraic subsets of the space of matrices. These include the space of rectangular/(skew-)symmetric/hermitian matrices of rank equal to a given number and their closures, and the upper triangular matrices with determinant 0. (In these cases we establish explicit bilipschitz constants.) We also make a short discussion about generalizing these results to determinantal varieties in real and complex spaces.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-017-2027-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Closures ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Matrix methods ; Set theory</subject><ispartof>Mathematische Zeitschrift, 2018-10, Vol.290 (1-2), p.485-507</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-71a1ef4ed1cef2aa8ff6b3a4f924ca8260ac06e45f5f506e8bb0e5be6e1224733</citedby><cites>FETCH-LOGICAL-c316t-71a1ef4ed1cef2aa8ff6b3a4f924ca8260ac06e45f5f506e8bb0e5be6e1224733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-017-2027-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-017-2027-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kerner, Dmitry</creatorcontrib><creatorcontrib>Pedersen, Helge Møller</creatorcontrib><creatorcontrib>Ruas, Maria A. S.</creatorcontrib><title>Lipschitz normal embeddings in the space of matrices</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>A semi-algebraic subset in R n or C n is naturally equipped with two different metrics, the inner metric and the outer metric. Such a set (or its germ) is called Lipschitz normally embedded if the two metrics are bilipschitz equivalent. In this article we prove Lipschitz normal embeddedness of some algebraic subsets of the space of matrices. These include the space of rectangular/(skew-)symmetric/hermitian matrices of rank equal to a given number and their closures, and the upper triangular matrices with determinant 0. (In these cases we establish explicit bilipschitz constants.) We also make a short discussion about generalizing these results to determinantal varieties in real and complex spaces.</description><subject>Algebra</subject><subject>Closures</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix methods</subject><subject>Set theory</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvAc3SSzSbpUYpaYcGLnkM2O2m3dP-YbA_66U1ZwZPMYQbeezPMj5BbDvccQD8kAAErBlwzAUIzeUYWXBaCcSOKc7LIcslKo-UluUppD5BFLRdEVu2Y_K6dvmk_xM4dKHY1Nk3bbxNtezrtkKbReaRDoJ2bYusxXZOL4A4Jb377knw8P72vN6x6e3ldP1bMF1xNTHPHMUhsuMcgnDMhqLpwMqyE9M4IBc6DQlmGXHkwdQ1Y1qiQCyF1USzJ3bx3jMPnEdNk98Mx9vmkzc-WShlhyuzis8vHIaWIwY6x7Vz8shzsCY6d4dgMx57gWJkzYs6k7O23GP82_x_6AT-WZoQ</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Kerner, Dmitry</creator><creator>Pedersen, Helge Møller</creator><creator>Ruas, Maria A. S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181001</creationdate><title>Lipschitz normal embeddings in the space of matrices</title><author>Kerner, Dmitry ; Pedersen, Helge Møller ; Ruas, Maria A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-71a1ef4ed1cef2aa8ff6b3a4f924ca8260ac06e45f5f506e8bb0e5be6e1224733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Closures</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix methods</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kerner, Dmitry</creatorcontrib><creatorcontrib>Pedersen, Helge Møller</creatorcontrib><creatorcontrib>Ruas, Maria A. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kerner, Dmitry</au><au>Pedersen, Helge Møller</au><au>Ruas, Maria A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipschitz normal embeddings in the space of matrices</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>290</volume><issue>1-2</issue><spage>485</spage><epage>507</epage><pages>485-507</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>A semi-algebraic subset in R n or C n is naturally equipped with two different metrics, the inner metric and the outer metric. Such a set (or its germ) is called Lipschitz normally embedded if the two metrics are bilipschitz equivalent. In this article we prove Lipschitz normal embeddedness of some algebraic subsets of the space of matrices. These include the space of rectangular/(skew-)symmetric/hermitian matrices of rank equal to a given number and their closures, and the upper triangular matrices with determinant 0. (In these cases we establish explicit bilipschitz constants.) We also make a short discussion about generalizing these results to determinantal varieties in real and complex spaces.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-017-2027-4</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2018-10, Vol.290 (1-2), p.485-507
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_2095668285
source SpringerLink Journals
subjects Algebra
Closures
Mathematical analysis
Mathematics
Mathematics and Statistics
Matrix methods
Set theory
title Lipschitz normal embeddings in the space of matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipschitz%20normal%20embeddings%20in%20the%20space%20of%20matrices&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Kerner,%20Dmitry&rft.date=2018-10-01&rft.volume=290&rft.issue=1-2&rft.spage=485&rft.epage=507&rft.pages=485-507&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-017-2027-4&rft_dat=%3Cproquest_cross%3E2095668285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2095668285&rft_id=info:pmid/&rfr_iscdi=true