Evaluation of Microstructure and Mechanical Properties of Multilayer Al5052–Cu Composite Produced by Accmulative Roll Bonding
A multilayer Al5052–Cu composite is prepared by accumulative roll bonding (ARB) and the microstructure and mechanical properties are evaluated using optical microscopy, scanning electron microscopy (SEM), tensile tests, and micro-hardness measurements. The results show that the thickness (1000 μm) o...
Gespeichert in:
Veröffentlicht in: | Powder metallurgy and metal ceramics 2018-07, Vol.57 (3-4), p.144-153 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | 3-4 |
container_start_page | 144 |
container_title | Powder metallurgy and metal ceramics |
container_volume | 57 |
creator | Rahmatabadi, D. Tayyebi, M. Hashemi, R. Faraji, G. |
description | A multilayer Al5052–Cu composite is prepared by accumulative roll bonding (ARB) and the microstructure and mechanical properties are evaluated using optical microscopy, scanning electron microscopy (SEM), tensile tests, and micro-hardness measurements. The results show that the thickness (1000 μm) of copper layers of the initial sample is reduced to ~7 μm after the fifth ARB cycle, while the thickness of Al layer increases. With increasing number of ARB cycles, the microhardness of both aluminum and copper layers is significantly increased. The tensile strength of the sandwich is enhanced continiousely, and the maximum value of 566.5 MPa is achieved. The high strength of 566.5 MPa and ductility of 9.61% is achieved, which is ~47 and ~21% higher, than the maximum values found out in the publications. The investigation of the tensile fracture of surfaces during ARB indicates that the increase in ARB cycles changes the fracture mechanism to shear ductile. |
doi_str_mv | 10.1007/s11106-018-9962-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2095665342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A552174360</galeid><sourcerecordid>A552174360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-a57c436f16bea9b49055460f04a43f71643463d0c23f8c1579ad8a209182a66a3</originalsourceid><addsrcrecordid>eNp1kc1qVDEUxy9SwVp9AHeBrm978nnvXU6H2gotiug6ZHKTMSWTTPNRmJW-g2_ok5jxFlyVLBIOv1_OSf5d9wHDBQYYLjPGGEQPeOynSZCevepOMR9oP4EQJ-0MYuwxBfKme5vzA0CzGD7tfl4_KV9VcTGgaNG90ynmkqouNRmkwozujf6hgtPKoy8p7k0qzuR_bPXFeXUwCa08B07-_Pq9rmgdd_uYXTFHfK7azGhzQCutd9W3Pk8GfY3eo6sYZhe277rXVvls3j_vZ933j9ff1rf93eebT-vVXa_pNJZe8UEzKiwWG6OmDZuAcybAAlOM2gELRpmgM2hC7ajbwyc1j4rAhEeihFD0rDtf7t2n-FhNLvIh1hRaS9koLgSnjDTqYqG2yhvpgo0lKd3WbHZOx2Csa_UV5wQPbRxoAl6E47flZKzcJ7dT6SAxyGMwcglGtmDkMRjJmkMWJzc2bE36P8rL0l-rQ5Do</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095665342</pqid></control><display><type>article</type><title>Evaluation of Microstructure and Mechanical Properties of Multilayer Al5052–Cu Composite Produced by Accmulative Roll Bonding</title><source>SpringerLink Journals</source><creator>Rahmatabadi, D. ; Tayyebi, M. ; Hashemi, R. ; Faraji, G.</creator><creatorcontrib>Rahmatabadi, D. ; Tayyebi, M. ; Hashemi, R. ; Faraji, G.</creatorcontrib><description>A multilayer Al5052–Cu composite is prepared by accumulative roll bonding (ARB) and the microstructure and mechanical properties are evaluated using optical microscopy, scanning electron microscopy (SEM), tensile tests, and micro-hardness measurements. The results show that the thickness (1000 μm) of copper layers of the initial sample is reduced to ~7 μm after the fifth ARB cycle, while the thickness of Al layer increases. With increasing number of ARB cycles, the microhardness of both aluminum and copper layers is significantly increased. The tensile strength of the sandwich is enhanced continiousely, and the maximum value of 566.5 MPa is achieved. The high strength of 566.5 MPa and ductility of 9.61% is achieved, which is ~47 and ~21% higher, than the maximum values found out in the publications. The investigation of the tensile fracture of surfaces during ARB indicates that the increase in ARB cycles changes the fracture mechanism to shear ductile.</description><identifier>ISSN: 1068-1302</identifier><identifier>EISSN: 1573-9066</identifier><identifier>DOI: 10.1007/s11106-018-9962-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum base alloys ; Analysis ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Copper ; Ductile fracture ; Fracture mechanics ; Glass ; Hardness (Materials) ; Materials Science ; Mechanical properties ; Metallic Materials ; Microhardness ; Microscopy ; Microstructure ; Multilayers ; Natural Materials ; Optical microscopy ; Optical properties ; Roll bonding ; Scanning electron microscopy ; Tensile tests ; Thickness</subject><ispartof>Powder metallurgy and metal ceramics, 2018-07, Vol.57 (3-4), p.144-153</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-a57c436f16bea9b49055460f04a43f71643463d0c23f8c1579ad8a209182a66a3</citedby><cites>FETCH-LOGICAL-c398t-a57c436f16bea9b49055460f04a43f71643463d0c23f8c1579ad8a209182a66a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11106-018-9962-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11106-018-9962-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rahmatabadi, D.</creatorcontrib><creatorcontrib>Tayyebi, M.</creatorcontrib><creatorcontrib>Hashemi, R.</creatorcontrib><creatorcontrib>Faraji, G.</creatorcontrib><title>Evaluation of Microstructure and Mechanical Properties of Multilayer Al5052–Cu Composite Produced by Accmulative Roll Bonding</title><title>Powder metallurgy and metal ceramics</title><addtitle>Powder Metall Met Ceram</addtitle><description>A multilayer Al5052–Cu composite is prepared by accumulative roll bonding (ARB) and the microstructure and mechanical properties are evaluated using optical microscopy, scanning electron microscopy (SEM), tensile tests, and micro-hardness measurements. The results show that the thickness (1000 μm) of copper layers of the initial sample is reduced to ~7 μm after the fifth ARB cycle, while the thickness of Al layer increases. With increasing number of ARB cycles, the microhardness of both aluminum and copper layers is significantly increased. The tensile strength of the sandwich is enhanced continiousely, and the maximum value of 566.5 MPa is achieved. The high strength of 566.5 MPa and ductility of 9.61% is achieved, which is ~47 and ~21% higher, than the maximum values found out in the publications. The investigation of the tensile fracture of surfaces during ARB indicates that the increase in ARB cycles changes the fracture mechanism to shear ductile.</description><subject>Aluminum base alloys</subject><subject>Analysis</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Copper</subject><subject>Ductile fracture</subject><subject>Fracture mechanics</subject><subject>Glass</subject><subject>Hardness (Materials)</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Microhardness</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Multilayers</subject><subject>Natural Materials</subject><subject>Optical microscopy</subject><subject>Optical properties</subject><subject>Roll bonding</subject><subject>Scanning electron microscopy</subject><subject>Tensile tests</subject><subject>Thickness</subject><issn>1068-1302</issn><issn>1573-9066</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc1qVDEUxy9SwVp9AHeBrm978nnvXU6H2gotiug6ZHKTMSWTTPNRmJW-g2_ok5jxFlyVLBIOv1_OSf5d9wHDBQYYLjPGGEQPeOynSZCevepOMR9oP4EQJ-0MYuwxBfKme5vzA0CzGD7tfl4_KV9VcTGgaNG90ynmkqouNRmkwozujf6hgtPKoy8p7k0qzuR_bPXFeXUwCa08B07-_Pq9rmgdd_uYXTFHfK7azGhzQCutd9W3Pk8GfY3eo6sYZhe277rXVvls3j_vZ933j9ff1rf93eebT-vVXa_pNJZe8UEzKiwWG6OmDZuAcybAAlOM2gELRpmgM2hC7ajbwyc1j4rAhEeihFD0rDtf7t2n-FhNLvIh1hRaS9koLgSnjDTqYqG2yhvpgo0lKd3WbHZOx2Csa_UV5wQPbRxoAl6E47flZKzcJ7dT6SAxyGMwcglGtmDkMRjJmkMWJzc2bE36P8rL0l-rQ5Do</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Rahmatabadi, D.</creator><creator>Tayyebi, M.</creator><creator>Hashemi, R.</creator><creator>Faraji, G.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180701</creationdate><title>Evaluation of Microstructure and Mechanical Properties of Multilayer Al5052–Cu Composite Produced by Accmulative Roll Bonding</title><author>Rahmatabadi, D. ; Tayyebi, M. ; Hashemi, R. ; Faraji, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-a57c436f16bea9b49055460f04a43f71643463d0c23f8c1579ad8a209182a66a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum base alloys</topic><topic>Analysis</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Copper</topic><topic>Ductile fracture</topic><topic>Fracture mechanics</topic><topic>Glass</topic><topic>Hardness (Materials)</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Microhardness</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Multilayers</topic><topic>Natural Materials</topic><topic>Optical microscopy</topic><topic>Optical properties</topic><topic>Roll bonding</topic><topic>Scanning electron microscopy</topic><topic>Tensile tests</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahmatabadi, D.</creatorcontrib><creatorcontrib>Tayyebi, M.</creatorcontrib><creatorcontrib>Hashemi, R.</creatorcontrib><creatorcontrib>Faraji, G.</creatorcontrib><collection>CrossRef</collection><jtitle>Powder metallurgy and metal ceramics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahmatabadi, D.</au><au>Tayyebi, M.</au><au>Hashemi, R.</au><au>Faraji, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Microstructure and Mechanical Properties of Multilayer Al5052–Cu Composite Produced by Accmulative Roll Bonding</atitle><jtitle>Powder metallurgy and metal ceramics</jtitle><stitle>Powder Metall Met Ceram</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>57</volume><issue>3-4</issue><spage>144</spage><epage>153</epage><pages>144-153</pages><issn>1068-1302</issn><eissn>1573-9066</eissn><abstract>A multilayer Al5052–Cu composite is prepared by accumulative roll bonding (ARB) and the microstructure and mechanical properties are evaluated using optical microscopy, scanning electron microscopy (SEM), tensile tests, and micro-hardness measurements. The results show that the thickness (1000 μm) of copper layers of the initial sample is reduced to ~7 μm after the fifth ARB cycle, while the thickness of Al layer increases. With increasing number of ARB cycles, the microhardness of both aluminum and copper layers is significantly increased. The tensile strength of the sandwich is enhanced continiousely, and the maximum value of 566.5 MPa is achieved. The high strength of 566.5 MPa and ductility of 9.61% is achieved, which is ~47 and ~21% higher, than the maximum values found out in the publications. The investigation of the tensile fracture of surfaces during ARB indicates that the increase in ARB cycles changes the fracture mechanism to shear ductile.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11106-018-9962-4</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1068-1302 |
ispartof | Powder metallurgy and metal ceramics, 2018-07, Vol.57 (3-4), p.144-153 |
issn | 1068-1302 1573-9066 |
language | eng |
recordid | cdi_proquest_journals_2095665342 |
source | SpringerLink Journals |
subjects | Aluminum base alloys Analysis Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Composites Copper Ductile fracture Fracture mechanics Glass Hardness (Materials) Materials Science Mechanical properties Metallic Materials Microhardness Microscopy Microstructure Multilayers Natural Materials Optical microscopy Optical properties Roll bonding Scanning electron microscopy Tensile tests Thickness |
title | Evaluation of Microstructure and Mechanical Properties of Multilayer Al5052–Cu Composite Produced by Accmulative Roll Bonding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A44%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Microstructure%20and%20Mechanical%20Properties%20of%20Multilayer%20Al5052%E2%80%93Cu%20Composite%20Produced%20by%20Accmulative%20Roll%20Bonding&rft.jtitle=Powder%20metallurgy%20and%20metal%20ceramics&rft.au=Rahmatabadi,%20D.&rft.date=2018-07-01&rft.volume=57&rft.issue=3-4&rft.spage=144&rft.epage=153&rft.pages=144-153&rft.issn=1068-1302&rft.eissn=1573-9066&rft_id=info:doi/10.1007/s11106-018-9962-4&rft_dat=%3Cgale_proqu%3EA552174360%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2095665342&rft_id=info:pmid/&rft_galeid=A552174360&rfr_iscdi=true |