Towards superlubricity in nanostructured surfaces: the role of van der Waals forces

Hydrogenated amorphous carbon (a-C:H) thin films have a unique combination of properties that are fundamental in mechanical and electromechanical devices aimed at energy efficiency issues. The literature brings a wealth of information about the ultra-low friction (superlubricity) mechanism in a-C:H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2018, Vol.2 (34), p.21949-21959
Hauptverfasser: Echeverrigaray, Fernando G, de Mello, Saron R, Leidens, Leonardo M, Maia da Costa, Marcelo E, Alvarez, Fernando, Burgo, Thiago A. L, Michels, Alexandre F, Figueroa, Carlos A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21959
container_issue 34
container_start_page 21949
container_title Physical chemistry chemical physics : PCCP
container_volume 2
creator Echeverrigaray, Fernando G
de Mello, Saron R
Leidens, Leonardo M
Maia da Costa, Marcelo E
Alvarez, Fernando
Burgo, Thiago A. L
Michels, Alexandre F
Figueroa, Carlos A
description Hydrogenated amorphous carbon (a-C:H) thin films have a unique combination of properties that are fundamental in mechanical and electromechanical devices aimed at energy efficiency issues. The literature brings a wealth of information about the ultra-low friction (superlubricity) mechanism in a-C:H thin films. However, there is persistent controversy concerning the physicochemical mechanisms of contact mechanics at the atomic/molecular level and the role of electrical interactions at the sliding interface is still a matter of debate. We find that the hydrogenation of the outermost nanostructured surface atomic layers of a-C:H thin films is proportional to the surface potential and also to the friction forces arising at the sliding interface. A higher hydrogen-to-carbon ratio reduces the surface potential, directly affecting frictional forces by a less effective long-term interaction. The structural ultra-low friction (superlubricity) is attributed to a lower polarizability at the outermost nanostructured layer of a-C:H thin films due to a higher hydrogen density, which renders weaker van der Waals forces, in particular London dispersion forces. More hydrogenated nanodomains at the surface of a-C:H thin films are proposed to be used to tailor superlubricity. Energy dissipation associated with frictional damping mechanisms owing to van der Waals (vdW) forces by induced polarizability at the sliding interface of a-C:H thin films.
doi_str_mv 10.1039/c8cp02508h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2095643221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2095643221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-8b38b8725c20a3932082482e1a4099e7ec302c77387be12a9e020ff6e40d0cd3</originalsourceid><addsrcrecordid>eNpd0cFLwzAUBvAgipvTi3cl4EWE6UvSNqk3KeqEgYIDjyVNX1lH18ykVfbfG92c4Cl55MfH4wshpwyuGYj0xiizAh6Dmu-RIYsSMU5BRfu7u0wG5Mj7BQCwmIlDMhAAKZOSD8nrzH5qV3rq-xW6pi9cbepuTeuWtrq1vnO96XqHZQCu0gb9Le3mSJ1tkNqKfuiWlujom9aNp5V1QRyTgypMeLI9R2T2cD_LJuPp8-NTdjcdGyGjbqwKoQoleWw4aJEKDopHiiPTEaQpSjQCuJFSKFkg4zpF4FBVCUZQginFiFxuYlfOvvfou3xZe4NNo1u0vc9DXsITLiMZ6MU_urC9a8NyQaVxEgnOWVBXG2Wc9d5hla9cvdRunTPIv5vOM5W9_DQ9Cfh8G9kXSyx39LfaAM42wHmze_37KvEFxOeBjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095643221</pqid></control><display><type>article</type><title>Towards superlubricity in nanostructured surfaces: the role of van der Waals forces</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Echeverrigaray, Fernando G ; de Mello, Saron R ; Leidens, Leonardo M ; Maia da Costa, Marcelo E ; Alvarez, Fernando ; Burgo, Thiago A. L ; Michels, Alexandre F ; Figueroa, Carlos A</creator><creatorcontrib>Echeverrigaray, Fernando G ; de Mello, Saron R ; Leidens, Leonardo M ; Maia da Costa, Marcelo E ; Alvarez, Fernando ; Burgo, Thiago A. L ; Michels, Alexandre F ; Figueroa, Carlos A</creatorcontrib><description>Hydrogenated amorphous carbon (a-C:H) thin films have a unique combination of properties that are fundamental in mechanical and electromechanical devices aimed at energy efficiency issues. The literature brings a wealth of information about the ultra-low friction (superlubricity) mechanism in a-C:H thin films. However, there is persistent controversy concerning the physicochemical mechanisms of contact mechanics at the atomic/molecular level and the role of electrical interactions at the sliding interface is still a matter of debate. We find that the hydrogenation of the outermost nanostructured surface atomic layers of a-C:H thin films is proportional to the surface potential and also to the friction forces arising at the sliding interface. A higher hydrogen-to-carbon ratio reduces the surface potential, directly affecting frictional forces by a less effective long-term interaction. The structural ultra-low friction (superlubricity) is attributed to a lower polarizability at the outermost nanostructured layer of a-C:H thin films due to a higher hydrogen density, which renders weaker van der Waals forces, in particular London dispersion forces. More hydrogenated nanodomains at the surface of a-C:H thin films are proposed to be used to tailor superlubricity. Energy dissipation associated with frictional damping mechanisms owing to van der Waals (vdW) forces by induced polarizability at the sliding interface of a-C:H thin films.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp02508h</identifier><identifier>PMID: 30091772</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Carbon ; Electric contacts ; Electromechanical devices ; Friction ; Hydrogen storage ; Hydrogenation ; Nanostructure ; Sliding ; Thin films ; Van der Waals forces</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018, Vol.2 (34), p.21949-21959</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-8b38b8725c20a3932082482e1a4099e7ec302c77387be12a9e020ff6e40d0cd3</citedby><cites>FETCH-LOGICAL-c374t-8b38b8725c20a3932082482e1a4099e7ec302c77387be12a9e020ff6e40d0cd3</cites><orcidid>0000-0003-2521-3574 ; 0000-0002-9473-1626 ; 0000-0003-4306-1228 ; 0000-0003-4552-1013 ; 0000-0002-9393-1298 ; 0000-0003-1900-6376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30091772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Echeverrigaray, Fernando G</creatorcontrib><creatorcontrib>de Mello, Saron R</creatorcontrib><creatorcontrib>Leidens, Leonardo M</creatorcontrib><creatorcontrib>Maia da Costa, Marcelo E</creatorcontrib><creatorcontrib>Alvarez, Fernando</creatorcontrib><creatorcontrib>Burgo, Thiago A. L</creatorcontrib><creatorcontrib>Michels, Alexandre F</creatorcontrib><creatorcontrib>Figueroa, Carlos A</creatorcontrib><title>Towards superlubricity in nanostructured surfaces: the role of van der Waals forces</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Hydrogenated amorphous carbon (a-C:H) thin films have a unique combination of properties that are fundamental in mechanical and electromechanical devices aimed at energy efficiency issues. The literature brings a wealth of information about the ultra-low friction (superlubricity) mechanism in a-C:H thin films. However, there is persistent controversy concerning the physicochemical mechanisms of contact mechanics at the atomic/molecular level and the role of electrical interactions at the sliding interface is still a matter of debate. We find that the hydrogenation of the outermost nanostructured surface atomic layers of a-C:H thin films is proportional to the surface potential and also to the friction forces arising at the sliding interface. A higher hydrogen-to-carbon ratio reduces the surface potential, directly affecting frictional forces by a less effective long-term interaction. The structural ultra-low friction (superlubricity) is attributed to a lower polarizability at the outermost nanostructured layer of a-C:H thin films due to a higher hydrogen density, which renders weaker van der Waals forces, in particular London dispersion forces. More hydrogenated nanodomains at the surface of a-C:H thin films are proposed to be used to tailor superlubricity. Energy dissipation associated with frictional damping mechanisms owing to van der Waals (vdW) forces by induced polarizability at the sliding interface of a-C:H thin films.</description><subject>Carbon</subject><subject>Electric contacts</subject><subject>Electromechanical devices</subject><subject>Friction</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Nanostructure</subject><subject>Sliding</subject><subject>Thin films</subject><subject>Van der Waals forces</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0cFLwzAUBvAgipvTi3cl4EWE6UvSNqk3KeqEgYIDjyVNX1lH18ykVfbfG92c4Cl55MfH4wshpwyuGYj0xiizAh6Dmu-RIYsSMU5BRfu7u0wG5Mj7BQCwmIlDMhAAKZOSD8nrzH5qV3rq-xW6pi9cbepuTeuWtrq1vnO96XqHZQCu0gb9Le3mSJ1tkNqKfuiWlujom9aNp5V1QRyTgypMeLI9R2T2cD_LJuPp8-NTdjcdGyGjbqwKoQoleWw4aJEKDopHiiPTEaQpSjQCuJFSKFkg4zpF4FBVCUZQginFiFxuYlfOvvfou3xZe4NNo1u0vc9DXsITLiMZ6MU_urC9a8NyQaVxEgnOWVBXG2Wc9d5hla9cvdRunTPIv5vOM5W9_DQ9Cfh8G9kXSyx39LfaAM42wHmze_37KvEFxOeBjA</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Echeverrigaray, Fernando G</creator><creator>de Mello, Saron R</creator><creator>Leidens, Leonardo M</creator><creator>Maia da Costa, Marcelo E</creator><creator>Alvarez, Fernando</creator><creator>Burgo, Thiago A. L</creator><creator>Michels, Alexandre F</creator><creator>Figueroa, Carlos A</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2521-3574</orcidid><orcidid>https://orcid.org/0000-0002-9473-1626</orcidid><orcidid>https://orcid.org/0000-0003-4306-1228</orcidid><orcidid>https://orcid.org/0000-0003-4552-1013</orcidid><orcidid>https://orcid.org/0000-0002-9393-1298</orcidid><orcidid>https://orcid.org/0000-0003-1900-6376</orcidid></search><sort><creationdate>2018</creationdate><title>Towards superlubricity in nanostructured surfaces: the role of van der Waals forces</title><author>Echeverrigaray, Fernando G ; de Mello, Saron R ; Leidens, Leonardo M ; Maia da Costa, Marcelo E ; Alvarez, Fernando ; Burgo, Thiago A. L ; Michels, Alexandre F ; Figueroa, Carlos A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-8b38b8725c20a3932082482e1a4099e7ec302c77387be12a9e020ff6e40d0cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon</topic><topic>Electric contacts</topic><topic>Electromechanical devices</topic><topic>Friction</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Nanostructure</topic><topic>Sliding</topic><topic>Thin films</topic><topic>Van der Waals forces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Echeverrigaray, Fernando G</creatorcontrib><creatorcontrib>de Mello, Saron R</creatorcontrib><creatorcontrib>Leidens, Leonardo M</creatorcontrib><creatorcontrib>Maia da Costa, Marcelo E</creatorcontrib><creatorcontrib>Alvarez, Fernando</creatorcontrib><creatorcontrib>Burgo, Thiago A. L</creatorcontrib><creatorcontrib>Michels, Alexandre F</creatorcontrib><creatorcontrib>Figueroa, Carlos A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Echeverrigaray, Fernando G</au><au>de Mello, Saron R</au><au>Leidens, Leonardo M</au><au>Maia da Costa, Marcelo E</au><au>Alvarez, Fernando</au><au>Burgo, Thiago A. L</au><au>Michels, Alexandre F</au><au>Figueroa, Carlos A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards superlubricity in nanostructured surfaces: the role of van der Waals forces</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018</date><risdate>2018</risdate><volume>2</volume><issue>34</issue><spage>21949</spage><epage>21959</epage><pages>21949-21959</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Hydrogenated amorphous carbon (a-C:H) thin films have a unique combination of properties that are fundamental in mechanical and electromechanical devices aimed at energy efficiency issues. The literature brings a wealth of information about the ultra-low friction (superlubricity) mechanism in a-C:H thin films. However, there is persistent controversy concerning the physicochemical mechanisms of contact mechanics at the atomic/molecular level and the role of electrical interactions at the sliding interface is still a matter of debate. We find that the hydrogenation of the outermost nanostructured surface atomic layers of a-C:H thin films is proportional to the surface potential and also to the friction forces arising at the sliding interface. A higher hydrogen-to-carbon ratio reduces the surface potential, directly affecting frictional forces by a less effective long-term interaction. The structural ultra-low friction (superlubricity) is attributed to a lower polarizability at the outermost nanostructured layer of a-C:H thin films due to a higher hydrogen density, which renders weaker van der Waals forces, in particular London dispersion forces. More hydrogenated nanodomains at the surface of a-C:H thin films are proposed to be used to tailor superlubricity. Energy dissipation associated with frictional damping mechanisms owing to van der Waals (vdW) forces by induced polarizability at the sliding interface of a-C:H thin films.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30091772</pmid><doi>10.1039/c8cp02508h</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2521-3574</orcidid><orcidid>https://orcid.org/0000-0002-9473-1626</orcidid><orcidid>https://orcid.org/0000-0003-4306-1228</orcidid><orcidid>https://orcid.org/0000-0003-4552-1013</orcidid><orcidid>https://orcid.org/0000-0002-9393-1298</orcidid><orcidid>https://orcid.org/0000-0003-1900-6376</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2018, Vol.2 (34), p.21949-21959
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_journals_2095643221
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Carbon
Electric contacts
Electromechanical devices
Friction
Hydrogen storage
Hydrogenation
Nanostructure
Sliding
Thin films
Van der Waals forces
title Towards superlubricity in nanostructured surfaces: the role of van der Waals forces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20superlubricity%20in%20nanostructured%20surfaces:%20the%20role%20of%20van%20der%20Waals%20forces&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Echeverrigaray,%20Fernando%20G&rft.date=2018&rft.volume=2&rft.issue=34&rft.spage=21949&rft.epage=21959&rft.pages=21949-21959&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp02508h&rft_dat=%3Cproquest_cross%3E2095643221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2095643221&rft_id=info:pmid/30091772&rfr_iscdi=true