Efficient parameter estimation for a methane hydrate model with active subspaces

Methane gas hydrates have increasingly become a topic of interest because of their potential as a future energy resource. There are significant economical and environmental risks associated with extraction from hydrate reservoirs, so a variety of multiphysics models have been developed to analyze pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational geosciences 2019-04, Vol.23 (2), p.355-372
Hauptverfasser: Teixeira Parente, Mario, Mattis, Steven, Gupta, Shubhangi, Deusner, Christian, Wohlmuth, Barbara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 372
container_issue 2
container_start_page 355
container_title Computational geosciences
container_volume 23
creator Teixeira Parente, Mario
Mattis, Steven
Gupta, Shubhangi
Deusner, Christian
Wohlmuth, Barbara
description Methane gas hydrates have increasingly become a topic of interest because of their potential as a future energy resource. There are significant economical and environmental risks associated with extraction from hydrate reservoirs, so a variety of multiphysics models have been developed to analyze prospective risks and benefits. These models generally have a large number of empirical parameters which are not known a priori. Traditional optimization-based parameter estimation frameworks may be ill-posed or computationally prohibitive. Bayesian inference methods have increasingly been found effective for estimating parameters in complex geophysical systems. These methods often are not viable in cases of computationally expensive models and high-dimensional parameter spaces. Recently, methods have been developed to effectively reduce the dimension of Bayesian inverse problems by identifying low-dimensional structures that are most informed by data. Active subspaces is one of the most generally applicable methods of performing this dimension reduction. In this paper, Bayesian inference of the parameters of a state-of-the-art mathematical model for methane hydrates based on experimental data from a triaxial compression test with gas hydrate-bearing sand is performed in an efficient way by utilizing active subspaces. Active subspaces are used to identify low-dimensional structure in the parameter space which is exploited by generating a cheap regression-based surrogate model and implementing a modified Markov chain Monte Carlo algorithm. Posterior densities having means that match the experimental data are approximated in a computationally efficient way.
doi_str_mv 10.1007/s10596-018-9769-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2094963167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2094963167</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-823c3b57429d03830e3276251a3b032f6e401d9ebcb4857efe3b142837102eee3</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSMEEmPwAbhF4hxw4rZpjmgaf6RJcIBzlLYu67S1Jclg-_ZkGhInTras37P9HmPXEm4lgL4LEnJTCJClMLowYnfCJjLXKGRmzGnqMwUiIfqcXYSwAgCjUU7Y67xtu7qjPvLRebehSJ5TiN3GxW7oeTt47ngaL11PfLlvvIvEN0NDa_7dxSV3dey-iIdtFUZXU7hkZ61bB7r6rVP2_jB_mz2Jxcvj8-x-IRyiiaJUWGOV60yZBrBEIFS6ULl0WAGqtqAMZGOoqquszDW1hFXyUKKWoIgIp-zmuHf0w-c2fWxXw9b36aRVYDJToCx0ouSRqv0QgqfWjj5Z83srwR6Cs8fgbArOHoKzu6RRR01IbP9B_m_z_6IfRf1w9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094963167</pqid></control><display><type>article</type><title>Efficient parameter estimation for a methane hydrate model with active subspaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Teixeira Parente, Mario ; Mattis, Steven ; Gupta, Shubhangi ; Deusner, Christian ; Wohlmuth, Barbara</creator><creatorcontrib>Teixeira Parente, Mario ; Mattis, Steven ; Gupta, Shubhangi ; Deusner, Christian ; Wohlmuth, Barbara</creatorcontrib><description>Methane gas hydrates have increasingly become a topic of interest because of their potential as a future energy resource. There are significant economical and environmental risks associated with extraction from hydrate reservoirs, so a variety of multiphysics models have been developed to analyze prospective risks and benefits. These models generally have a large number of empirical parameters which are not known a priori. Traditional optimization-based parameter estimation frameworks may be ill-posed or computationally prohibitive. Bayesian inference methods have increasingly been found effective for estimating parameters in complex geophysical systems. These methods often are not viable in cases of computationally expensive models and high-dimensional parameter spaces. Recently, methods have been developed to effectively reduce the dimension of Bayesian inverse problems by identifying low-dimensional structures that are most informed by data. Active subspaces is one of the most generally applicable methods of performing this dimension reduction. In this paper, Bayesian inference of the parameters of a state-of-the-art mathematical model for methane hydrates based on experimental data from a triaxial compression test with gas hydrate-bearing sand is performed in an efficient way by utilizing active subspaces. Active subspaces are used to identify low-dimensional structure in the parameter space which is exploited by generating a cheap regression-based surrogate model and implementing a modified Markov chain Monte Carlo algorithm. Posterior densities having means that match the experimental data are approximated in a computationally efficient way.</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1007/s10596-018-9769-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Bayesian analysis ; Compression ; Computer simulation ; Data compression ; Earth and Environmental Science ; Earth Sciences ; Empirical analysis ; Energy sources ; Environmental risk ; Experimental data ; Exploitation ; Gas hydrates ; Geophysical methods ; Geophysics ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrates ; Hydrogeology ; Ill posed problems ; Inverse problems ; Markov chains ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Methane ; Methane hydrates ; Monte Carlo simulation ; Original Paper ; Parameter estimation ; Parameter identification ; Parameters ; Probability theory ; Regression analysis ; Regression models ; Soil Science &amp; Conservation ; Statistical inference ; Statistical methods ; Subspaces ; System effectiveness ; Triaxial compression tests</subject><ispartof>Computational geosciences, 2019-04, Vol.23 (2), p.355-372</ispartof><rights>Springer Nature Switzerland AG 2018. corrected publication September/2018</rights><rights>Computational Geosciences is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-823c3b57429d03830e3276251a3b032f6e401d9ebcb4857efe3b142837102eee3</citedby><cites>FETCH-LOGICAL-a339t-823c3b57429d03830e3276251a3b032f6e401d9ebcb4857efe3b142837102eee3</cites><orcidid>0000-0002-1924-8730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10596-018-9769-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10596-018-9769-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Teixeira Parente, Mario</creatorcontrib><creatorcontrib>Mattis, Steven</creatorcontrib><creatorcontrib>Gupta, Shubhangi</creatorcontrib><creatorcontrib>Deusner, Christian</creatorcontrib><creatorcontrib>Wohlmuth, Barbara</creatorcontrib><title>Efficient parameter estimation for a methane hydrate model with active subspaces</title><title>Computational geosciences</title><addtitle>Comput Geosci</addtitle><description>Methane gas hydrates have increasingly become a topic of interest because of their potential as a future energy resource. There are significant economical and environmental risks associated with extraction from hydrate reservoirs, so a variety of multiphysics models have been developed to analyze prospective risks and benefits. These models generally have a large number of empirical parameters which are not known a priori. Traditional optimization-based parameter estimation frameworks may be ill-posed or computationally prohibitive. Bayesian inference methods have increasingly been found effective for estimating parameters in complex geophysical systems. These methods often are not viable in cases of computationally expensive models and high-dimensional parameter spaces. Recently, methods have been developed to effectively reduce the dimension of Bayesian inverse problems by identifying low-dimensional structures that are most informed by data. Active subspaces is one of the most generally applicable methods of performing this dimension reduction. In this paper, Bayesian inference of the parameters of a state-of-the-art mathematical model for methane hydrates based on experimental data from a triaxial compression test with gas hydrate-bearing sand is performed in an efficient way by utilizing active subspaces. Active subspaces are used to identify low-dimensional structure in the parameter space which is exploited by generating a cheap regression-based surrogate model and implementing a modified Markov chain Monte Carlo algorithm. Posterior densities having means that match the experimental data are approximated in a computationally efficient way.</description><subject>Bayesian analysis</subject><subject>Compression</subject><subject>Computer simulation</subject><subject>Data compression</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Empirical analysis</subject><subject>Energy sources</subject><subject>Environmental risk</subject><subject>Experimental data</subject><subject>Exploitation</subject><subject>Gas hydrates</subject><subject>Geophysical methods</subject><subject>Geophysics</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrates</subject><subject>Hydrogeology</subject><subject>Ill posed problems</subject><subject>Inverse problems</subject><subject>Markov chains</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Methane</subject><subject>Methane hydrates</subject><subject>Monte Carlo simulation</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Parameters</subject><subject>Probability theory</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Soil Science &amp; Conservation</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Subspaces</subject><subject>System effectiveness</subject><subject>Triaxial compression tests</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9PwzAMxSMEEmPwAbhF4hxw4rZpjmgaf6RJcIBzlLYu67S1Jclg-_ZkGhInTras37P9HmPXEm4lgL4LEnJTCJClMLowYnfCJjLXKGRmzGnqMwUiIfqcXYSwAgCjUU7Y67xtu7qjPvLRebehSJ5TiN3GxW7oeTt47ngaL11PfLlvvIvEN0NDa_7dxSV3dey-iIdtFUZXU7hkZ61bB7r6rVP2_jB_mz2Jxcvj8-x-IRyiiaJUWGOV60yZBrBEIFS6ULl0WAGqtqAMZGOoqquszDW1hFXyUKKWoIgIp-zmuHf0w-c2fWxXw9b36aRVYDJToCx0ouSRqv0QgqfWjj5Z83srwR6Cs8fgbArOHoKzu6RRR01IbP9B_m_z_6IfRf1w9A</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Teixeira Parente, Mario</creator><creator>Mattis, Steven</creator><creator>Gupta, Shubhangi</creator><creator>Deusner, Christian</creator><creator>Wohlmuth, Barbara</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1924-8730</orcidid></search><sort><creationdate>20190401</creationdate><title>Efficient parameter estimation for a methane hydrate model with active subspaces</title><author>Teixeira Parente, Mario ; Mattis, Steven ; Gupta, Shubhangi ; Deusner, Christian ; Wohlmuth, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-823c3b57429d03830e3276251a3b032f6e401d9ebcb4857efe3b142837102eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Compression</topic><topic>Computer simulation</topic><topic>Data compression</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Empirical analysis</topic><topic>Energy sources</topic><topic>Environmental risk</topic><topic>Experimental data</topic><topic>Exploitation</topic><topic>Gas hydrates</topic><topic>Geophysical methods</topic><topic>Geophysics</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrates</topic><topic>Hydrogeology</topic><topic>Ill posed problems</topic><topic>Inverse problems</topic><topic>Markov chains</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Methane</topic><topic>Methane hydrates</topic><topic>Monte Carlo simulation</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Parameters</topic><topic>Probability theory</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Soil Science &amp; Conservation</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Subspaces</topic><topic>System effectiveness</topic><topic>Triaxial compression tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teixeira Parente, Mario</creatorcontrib><creatorcontrib>Mattis, Steven</creatorcontrib><creatorcontrib>Gupta, Shubhangi</creatorcontrib><creatorcontrib>Deusner, Christian</creatorcontrib><creatorcontrib>Wohlmuth, Barbara</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teixeira Parente, Mario</au><au>Mattis, Steven</au><au>Gupta, Shubhangi</au><au>Deusner, Christian</au><au>Wohlmuth, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient parameter estimation for a methane hydrate model with active subspaces</atitle><jtitle>Computational geosciences</jtitle><stitle>Comput Geosci</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>23</volume><issue>2</issue><spage>355</spage><epage>372</epage><pages>355-372</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>Methane gas hydrates have increasingly become a topic of interest because of their potential as a future energy resource. There are significant economical and environmental risks associated with extraction from hydrate reservoirs, so a variety of multiphysics models have been developed to analyze prospective risks and benefits. These models generally have a large number of empirical parameters which are not known a priori. Traditional optimization-based parameter estimation frameworks may be ill-posed or computationally prohibitive. Bayesian inference methods have increasingly been found effective for estimating parameters in complex geophysical systems. These methods often are not viable in cases of computationally expensive models and high-dimensional parameter spaces. Recently, methods have been developed to effectively reduce the dimension of Bayesian inverse problems by identifying low-dimensional structures that are most informed by data. Active subspaces is one of the most generally applicable methods of performing this dimension reduction. In this paper, Bayesian inference of the parameters of a state-of-the-art mathematical model for methane hydrates based on experimental data from a triaxial compression test with gas hydrate-bearing sand is performed in an efficient way by utilizing active subspaces. Active subspaces are used to identify low-dimensional structure in the parameter space which is exploited by generating a cheap regression-based surrogate model and implementing a modified Markov chain Monte Carlo algorithm. Posterior densities having means that match the experimental data are approximated in a computationally efficient way.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10596-018-9769-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1924-8730</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1420-0597
ispartof Computational geosciences, 2019-04, Vol.23 (2), p.355-372
issn 1420-0597
1573-1499
language eng
recordid cdi_proquest_journals_2094963167
source SpringerLink Journals - AutoHoldings
subjects Bayesian analysis
Compression
Computer simulation
Data compression
Earth and Environmental Science
Earth Sciences
Empirical analysis
Energy sources
Environmental risk
Experimental data
Exploitation
Gas hydrates
Geophysical methods
Geophysics
Geotechnical Engineering & Applied Earth Sciences
Hydrates
Hydrogeology
Ill posed problems
Inverse problems
Markov chains
Mathematical Modeling and Industrial Mathematics
Mathematical models
Methane
Methane hydrates
Monte Carlo simulation
Original Paper
Parameter estimation
Parameter identification
Parameters
Probability theory
Regression analysis
Regression models
Soil Science & Conservation
Statistical inference
Statistical methods
Subspaces
System effectiveness
Triaxial compression tests
title Efficient parameter estimation for a methane hydrate model with active subspaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20parameter%20estimation%20for%20a%20methane%20hydrate%20model%20with%20active%20subspaces&rft.jtitle=Computational%20geosciences&rft.au=Teixeira%20Parente,%20Mario&rft.date=2019-04-01&rft.volume=23&rft.issue=2&rft.spage=355&rft.epage=372&rft.pages=355-372&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1007/s10596-018-9769-x&rft_dat=%3Cproquest_cross%3E2094963167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2094963167&rft_id=info:pmid/&rfr_iscdi=true