Efficient parameter estimation for a methane hydrate model with active subspaces
Methane gas hydrates have increasingly become a topic of interest because of their potential as a future energy resource. There are significant economical and environmental risks associated with extraction from hydrate reservoirs, so a variety of multiphysics models have been developed to analyze pr...
Gespeichert in:
Veröffentlicht in: | Computational geosciences 2019-04, Vol.23 (2), p.355-372 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 372 |
---|---|
container_issue | 2 |
container_start_page | 355 |
container_title | Computational geosciences |
container_volume | 23 |
creator | Teixeira Parente, Mario Mattis, Steven Gupta, Shubhangi Deusner, Christian Wohlmuth, Barbara |
description | Methane gas hydrates have increasingly become a topic of interest because of their potential as a future energy resource. There are significant economical and environmental risks associated with extraction from hydrate reservoirs, so a variety of multiphysics models have been developed to analyze prospective risks and benefits. These models generally have a large number of empirical parameters which are not known a priori. Traditional optimization-based parameter estimation frameworks may be ill-posed or computationally prohibitive. Bayesian inference methods have increasingly been found effective for estimating parameters in complex geophysical systems. These methods often are not viable in cases of computationally expensive models and high-dimensional parameter spaces. Recently, methods have been developed to effectively reduce the dimension of Bayesian inverse problems by identifying low-dimensional structures that are most informed by data. Active subspaces is one of the most generally applicable methods of performing this dimension reduction. In this paper, Bayesian inference of the parameters of a state-of-the-art mathematical model for methane hydrates based on experimental data from a triaxial compression test with gas hydrate-bearing sand is performed in an efficient way by utilizing active subspaces. Active subspaces are used to identify low-dimensional structure in the parameter space which is exploited by generating a cheap regression-based surrogate model and implementing a modified Markov chain Monte Carlo algorithm. Posterior densities having means that match the experimental data are approximated in a computationally efficient way. |
doi_str_mv | 10.1007/s10596-018-9769-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2094963167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2094963167</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-823c3b57429d03830e3276251a3b032f6e401d9ebcb4857efe3b142837102eee3</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSMEEmPwAbhF4hxw4rZpjmgaf6RJcIBzlLYu67S1Jclg-_ZkGhInTras37P9HmPXEm4lgL4LEnJTCJClMLowYnfCJjLXKGRmzGnqMwUiIfqcXYSwAgCjUU7Y67xtu7qjPvLRebehSJ5TiN3GxW7oeTt47ngaL11PfLlvvIvEN0NDa_7dxSV3dey-iIdtFUZXU7hkZ61bB7r6rVP2_jB_mz2Jxcvj8-x-IRyiiaJUWGOV60yZBrBEIFS6ULl0WAGqtqAMZGOoqquszDW1hFXyUKKWoIgIp-zmuHf0w-c2fWxXw9b36aRVYDJToCx0ouSRqv0QgqfWjj5Z83srwR6Cs8fgbArOHoKzu6RRR01IbP9B_m_z_6IfRf1w9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094963167</pqid></control><display><type>article</type><title>Efficient parameter estimation for a methane hydrate model with active subspaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Teixeira Parente, Mario ; Mattis, Steven ; Gupta, Shubhangi ; Deusner, Christian ; Wohlmuth, Barbara</creator><creatorcontrib>Teixeira Parente, Mario ; Mattis, Steven ; Gupta, Shubhangi ; Deusner, Christian ; Wohlmuth, Barbara</creatorcontrib><description>Methane gas hydrates have increasingly become a topic of interest because of their potential as a future energy resource. There are significant economical and environmental risks associated with extraction from hydrate reservoirs, so a variety of multiphysics models have been developed to analyze prospective risks and benefits. These models generally have a large number of empirical parameters which are not known a priori. Traditional optimization-based parameter estimation frameworks may be ill-posed or computationally prohibitive. Bayesian inference methods have increasingly been found effective for estimating parameters in complex geophysical systems. These methods often are not viable in cases of computationally expensive models and high-dimensional parameter spaces. Recently, methods have been developed to effectively reduce the dimension of Bayesian inverse problems by identifying low-dimensional structures that are most informed by data. Active subspaces is one of the most generally applicable methods of performing this dimension reduction. In this paper, Bayesian inference of the parameters of a state-of-the-art mathematical model for methane hydrates based on experimental data from a triaxial compression test with gas hydrate-bearing sand is performed in an efficient way by utilizing active subspaces. Active subspaces are used to identify low-dimensional structure in the parameter space which is exploited by generating a cheap regression-based surrogate model and implementing a modified Markov chain Monte Carlo algorithm. Posterior densities having means that match the experimental data are approximated in a computationally efficient way.</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1007/s10596-018-9769-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Bayesian analysis ; Compression ; Computer simulation ; Data compression ; Earth and Environmental Science ; Earth Sciences ; Empirical analysis ; Energy sources ; Environmental risk ; Experimental data ; Exploitation ; Gas hydrates ; Geophysical methods ; Geophysics ; Geotechnical Engineering & Applied Earth Sciences ; Hydrates ; Hydrogeology ; Ill posed problems ; Inverse problems ; Markov chains ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Methane ; Methane hydrates ; Monte Carlo simulation ; Original Paper ; Parameter estimation ; Parameter identification ; Parameters ; Probability theory ; Regression analysis ; Regression models ; Soil Science & Conservation ; Statistical inference ; Statistical methods ; Subspaces ; System effectiveness ; Triaxial compression tests</subject><ispartof>Computational geosciences, 2019-04, Vol.23 (2), p.355-372</ispartof><rights>Springer Nature Switzerland AG 2018. corrected publication September/2018</rights><rights>Computational Geosciences is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-823c3b57429d03830e3276251a3b032f6e401d9ebcb4857efe3b142837102eee3</citedby><cites>FETCH-LOGICAL-a339t-823c3b57429d03830e3276251a3b032f6e401d9ebcb4857efe3b142837102eee3</cites><orcidid>0000-0002-1924-8730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10596-018-9769-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10596-018-9769-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Teixeira Parente, Mario</creatorcontrib><creatorcontrib>Mattis, Steven</creatorcontrib><creatorcontrib>Gupta, Shubhangi</creatorcontrib><creatorcontrib>Deusner, Christian</creatorcontrib><creatorcontrib>Wohlmuth, Barbara</creatorcontrib><title>Efficient parameter estimation for a methane hydrate model with active subspaces</title><title>Computational geosciences</title><addtitle>Comput Geosci</addtitle><description>Methane gas hydrates have increasingly become a topic of interest because of their potential as a future energy resource. There are significant economical and environmental risks associated with extraction from hydrate reservoirs, so a variety of multiphysics models have been developed to analyze prospective risks and benefits. These models generally have a large number of empirical parameters which are not known a priori. Traditional optimization-based parameter estimation frameworks may be ill-posed or computationally prohibitive. Bayesian inference methods have increasingly been found effective for estimating parameters in complex geophysical systems. These methods often are not viable in cases of computationally expensive models and high-dimensional parameter spaces. Recently, methods have been developed to effectively reduce the dimension of Bayesian inverse problems by identifying low-dimensional structures that are most informed by data. Active subspaces is one of the most generally applicable methods of performing this dimension reduction. In this paper, Bayesian inference of the parameters of a state-of-the-art mathematical model for methane hydrates based on experimental data from a triaxial compression test with gas hydrate-bearing sand is performed in an efficient way by utilizing active subspaces. Active subspaces are used to identify low-dimensional structure in the parameter space which is exploited by generating a cheap regression-based surrogate model and implementing a modified Markov chain Monte Carlo algorithm. Posterior densities having means that match the experimental data are approximated in a computationally efficient way.</description><subject>Bayesian analysis</subject><subject>Compression</subject><subject>Computer simulation</subject><subject>Data compression</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Empirical analysis</subject><subject>Energy sources</subject><subject>Environmental risk</subject><subject>Experimental data</subject><subject>Exploitation</subject><subject>Gas hydrates</subject><subject>Geophysical methods</subject><subject>Geophysics</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrates</subject><subject>Hydrogeology</subject><subject>Ill posed problems</subject><subject>Inverse problems</subject><subject>Markov chains</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Methane</subject><subject>Methane hydrates</subject><subject>Monte Carlo simulation</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Parameters</subject><subject>Probability theory</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Soil Science & Conservation</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Subspaces</subject><subject>System effectiveness</subject><subject>Triaxial compression tests</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9PwzAMxSMEEmPwAbhF4hxw4rZpjmgaf6RJcIBzlLYu67S1Jclg-_ZkGhInTras37P9HmPXEm4lgL4LEnJTCJClMLowYnfCJjLXKGRmzGnqMwUiIfqcXYSwAgCjUU7Y67xtu7qjPvLRebehSJ5TiN3GxW7oeTt47ngaL11PfLlvvIvEN0NDa_7dxSV3dey-iIdtFUZXU7hkZ61bB7r6rVP2_jB_mz2Jxcvj8-x-IRyiiaJUWGOV60yZBrBEIFS6ULl0WAGqtqAMZGOoqquszDW1hFXyUKKWoIgIp-zmuHf0w-c2fWxXw9b36aRVYDJToCx0ouSRqv0QgqfWjj5Z83srwR6Cs8fgbArOHoKzu6RRR01IbP9B_m_z_6IfRf1w9A</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Teixeira Parente, Mario</creator><creator>Mattis, Steven</creator><creator>Gupta, Shubhangi</creator><creator>Deusner, Christian</creator><creator>Wohlmuth, Barbara</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1924-8730</orcidid></search><sort><creationdate>20190401</creationdate><title>Efficient parameter estimation for a methane hydrate model with active subspaces</title><author>Teixeira Parente, Mario ; Mattis, Steven ; Gupta, Shubhangi ; Deusner, Christian ; Wohlmuth, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-823c3b57429d03830e3276251a3b032f6e401d9ebcb4857efe3b142837102eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Compression</topic><topic>Computer simulation</topic><topic>Data compression</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Empirical analysis</topic><topic>Energy sources</topic><topic>Environmental risk</topic><topic>Experimental data</topic><topic>Exploitation</topic><topic>Gas hydrates</topic><topic>Geophysical methods</topic><topic>Geophysics</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrates</topic><topic>Hydrogeology</topic><topic>Ill posed problems</topic><topic>Inverse problems</topic><topic>Markov chains</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Methane</topic><topic>Methane hydrates</topic><topic>Monte Carlo simulation</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Parameters</topic><topic>Probability theory</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Soil Science & Conservation</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Subspaces</topic><topic>System effectiveness</topic><topic>Triaxial compression tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teixeira Parente, Mario</creatorcontrib><creatorcontrib>Mattis, Steven</creatorcontrib><creatorcontrib>Gupta, Shubhangi</creatorcontrib><creatorcontrib>Deusner, Christian</creatorcontrib><creatorcontrib>Wohlmuth, Barbara</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teixeira Parente, Mario</au><au>Mattis, Steven</au><au>Gupta, Shubhangi</au><au>Deusner, Christian</au><au>Wohlmuth, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient parameter estimation for a methane hydrate model with active subspaces</atitle><jtitle>Computational geosciences</jtitle><stitle>Comput Geosci</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>23</volume><issue>2</issue><spage>355</spage><epage>372</epage><pages>355-372</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>Methane gas hydrates have increasingly become a topic of interest because of their potential as a future energy resource. There are significant economical and environmental risks associated with extraction from hydrate reservoirs, so a variety of multiphysics models have been developed to analyze prospective risks and benefits. These models generally have a large number of empirical parameters which are not known a priori. Traditional optimization-based parameter estimation frameworks may be ill-posed or computationally prohibitive. Bayesian inference methods have increasingly been found effective for estimating parameters in complex geophysical systems. These methods often are not viable in cases of computationally expensive models and high-dimensional parameter spaces. Recently, methods have been developed to effectively reduce the dimension of Bayesian inverse problems by identifying low-dimensional structures that are most informed by data. Active subspaces is one of the most generally applicable methods of performing this dimension reduction. In this paper, Bayesian inference of the parameters of a state-of-the-art mathematical model for methane hydrates based on experimental data from a triaxial compression test with gas hydrate-bearing sand is performed in an efficient way by utilizing active subspaces. Active subspaces are used to identify low-dimensional structure in the parameter space which is exploited by generating a cheap regression-based surrogate model and implementing a modified Markov chain Monte Carlo algorithm. Posterior densities having means that match the experimental data are approximated in a computationally efficient way.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10596-018-9769-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1924-8730</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-0597 |
ispartof | Computational geosciences, 2019-04, Vol.23 (2), p.355-372 |
issn | 1420-0597 1573-1499 |
language | eng |
recordid | cdi_proquest_journals_2094963167 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bayesian analysis Compression Computer simulation Data compression Earth and Environmental Science Earth Sciences Empirical analysis Energy sources Environmental risk Experimental data Exploitation Gas hydrates Geophysical methods Geophysics Geotechnical Engineering & Applied Earth Sciences Hydrates Hydrogeology Ill posed problems Inverse problems Markov chains Mathematical Modeling and Industrial Mathematics Mathematical models Methane Methane hydrates Monte Carlo simulation Original Paper Parameter estimation Parameter identification Parameters Probability theory Regression analysis Regression models Soil Science & Conservation Statistical inference Statistical methods Subspaces System effectiveness Triaxial compression tests |
title | Efficient parameter estimation for a methane hydrate model with active subspaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20parameter%20estimation%20for%20a%20methane%20hydrate%20model%20with%20active%20subspaces&rft.jtitle=Computational%20geosciences&rft.au=Teixeira%20Parente,%20Mario&rft.date=2019-04-01&rft.volume=23&rft.issue=2&rft.spage=355&rft.epage=372&rft.pages=355-372&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1007/s10596-018-9769-x&rft_dat=%3Cproquest_cross%3E2094963167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2094963167&rft_id=info:pmid/&rfr_iscdi=true |