An efficient hybrid orbital representation for quantum Monte Carlo calculations

The scale and complexity of the quantum system to which real-space quantum Monte Carlo (QMC) can be applied in part depends on the representation and memory usage of the trial wavefunction. B-splines, the computationally most efficient basis set, can have memory requirements exceeding the capacity o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2018-08, Vol.149 (8), p.084107-084107
Hauptverfasser: Luo, Ye, Esler, Kenneth P., Kent, Paul R. C., Shulenburger, Luke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 084107
container_issue 8
container_start_page 084107
container_title The Journal of chemical physics
container_volume 149
creator Luo, Ye
Esler, Kenneth P.
Kent, Paul R. C.
Shulenburger, Luke
description The scale and complexity of the quantum system to which real-space quantum Monte Carlo (QMC) can be applied in part depends on the representation and memory usage of the trial wavefunction. B-splines, the computationally most efficient basis set, can have memory requirements exceeding the capacity of a single computational node. This situation has traditionally forced a difficult choice of either using slow internode communication or a potentially less accurate but smaller basis set such as Gaussians. Here, we introduce a hybrid representation of the single particle orbitals that combine a localized atomic basis set around atomic cores and B-splines in the interstitial regions to reduce the memory usage while retaining the high speed of evaluation and either retaining or increasing overall accuracy. We present a benchmark calculation for NiO demonstrating a superior accuracy while using only one eighth of the memory required for conventional B-splines. The hybrid orbital representation therefore expands the overall range of systems that can be practically studied with QMC.
doi_str_mv 10.1063/1.5037094
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2094882648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2101267928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-a76f202d5cd2d8cd62a55cb8929cbb26acbd65c9999f78abee34a770eec8dbef3</originalsourceid><addsrcrecordid>eNp90btuHCEUBmAUxYrXjou8QISSJrY09oGZ4VJaq_giOXKT1AiYMzLWLKyBKfz2mfVuUqQIzSn49Av-Q8gnBpcMRHvFLntoJejuHVkxULqRQsN7sgLgrNECxDE5KeUZAJjk3Qdy3ALTbQ_9ijxeR4rjGHzAWOnTq8thoCm7UO1EM24zluXC1pAiHVOmL7ONdd7QHylWpGubp0S9nfw8vZnykRyNdip4dpin5NfN95_ru-bh8fZ-ff3Q-I5BbawUIwc-9H7gg_KD4LbvvVOaa-8cF9a7QfReL2eUyjrEtrNSAqJXg8OxPSVf9rmp1GCKDxX9k08xoq-GdRKUFAv6tkfbnF5mLNVsQvE4TTZimovhDBgXUnO10K__0Oc057h8wfClWKW46HbqfK98TqVkHM02h43Nr4aB2a3CMHNYxWI_HxJnt8Hhr_zT_QIu9mD3-rf2_pP2G6x3kKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094882648</pqid></control><display><type>article</type><title>An efficient hybrid orbital representation for quantum Monte Carlo calculations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Luo, Ye ; Esler, Kenneth P. ; Kent, Paul R. C. ; Shulenburger, Luke</creator><creatorcontrib>Luo, Ye ; Esler, Kenneth P. ; Kent, Paul R. C. ; Shulenburger, Luke ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The scale and complexity of the quantum system to which real-space quantum Monte Carlo (QMC) can be applied in part depends on the representation and memory usage of the trial wavefunction. B-splines, the computationally most efficient basis set, can have memory requirements exceeding the capacity of a single computational node. This situation has traditionally forced a difficult choice of either using slow internode communication or a potentially less accurate but smaller basis set such as Gaussians. Here, we introduce a hybrid representation of the single particle orbitals that combine a localized atomic basis set around atomic cores and B-splines in the interstitial regions to reduce the memory usage while retaining the high speed of evaluation and either retaining or increasing overall accuracy. We present a benchmark calculation for NiO demonstrating a superior accuracy while using only one eighth of the memory required for conventional B-splines. The hybrid orbital representation therefore expands the overall range of systems that can be practically studied with QMC.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5037094</identifier><identifier>PMID: 30193505</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>ATOMIC AND MOLECULAR PHYSICS ; basis sets ; computer interfaces ; Computer memory ; electronic structure ; Mathematical analysis ; Monte Carlo methods ; Quantum theory ; Representations ; Splines</subject><ispartof>The Journal of chemical physics, 2018-08, Vol.149 (8), p.084107-084107</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-a76f202d5cd2d8cd62a55cb8929cbb26acbd65c9999f78abee34a770eec8dbef3</citedby><cites>FETCH-LOGICAL-c410t-a76f202d5cd2d8cd62a55cb8929cbb26acbd65c9999f78abee34a770eec8dbef3</cites><orcidid>0000-0002-7165-084X ; 0000-0002-5117-2385 ; 0000-0001-5539-4017 ; 0000000251172385 ; 000000027165084X ; 0000000155394017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5037094$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30193505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1470876$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Ye</creatorcontrib><creatorcontrib>Esler, Kenneth P.</creatorcontrib><creatorcontrib>Kent, Paul R. C.</creatorcontrib><creatorcontrib>Shulenburger, Luke</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>An efficient hybrid orbital representation for quantum Monte Carlo calculations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The scale and complexity of the quantum system to which real-space quantum Monte Carlo (QMC) can be applied in part depends on the representation and memory usage of the trial wavefunction. B-splines, the computationally most efficient basis set, can have memory requirements exceeding the capacity of a single computational node. This situation has traditionally forced a difficult choice of either using slow internode communication or a potentially less accurate but smaller basis set such as Gaussians. Here, we introduce a hybrid representation of the single particle orbitals that combine a localized atomic basis set around atomic cores and B-splines in the interstitial regions to reduce the memory usage while retaining the high speed of evaluation and either retaining or increasing overall accuracy. We present a benchmark calculation for NiO demonstrating a superior accuracy while using only one eighth of the memory required for conventional B-splines. The hybrid orbital representation therefore expands the overall range of systems that can be practically studied with QMC.</description><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>basis sets</subject><subject>computer interfaces</subject><subject>Computer memory</subject><subject>electronic structure</subject><subject>Mathematical analysis</subject><subject>Monte Carlo methods</subject><subject>Quantum theory</subject><subject>Representations</subject><subject>Splines</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90btuHCEUBmAUxYrXjou8QISSJrY09oGZ4VJaq_giOXKT1AiYMzLWLKyBKfz2mfVuUqQIzSn49Av-Q8gnBpcMRHvFLntoJejuHVkxULqRQsN7sgLgrNECxDE5KeUZAJjk3Qdy3ALTbQ_9ijxeR4rjGHzAWOnTq8thoCm7UO1EM24zluXC1pAiHVOmL7ONdd7QHylWpGubp0S9nfw8vZnykRyNdip4dpin5NfN95_ru-bh8fZ-ff3Q-I5BbawUIwc-9H7gg_KD4LbvvVOaa-8cF9a7QfReL2eUyjrEtrNSAqJXg8OxPSVf9rmp1GCKDxX9k08xoq-GdRKUFAv6tkfbnF5mLNVsQvE4TTZimovhDBgXUnO10K__0Oc057h8wfClWKW46HbqfK98TqVkHM02h43Nr4aB2a3CMHNYxWI_HxJnt8Hhr_zT_QIu9mD3-rf2_pP2G6x3kKw</recordid><startdate>20180828</startdate><enddate>20180828</enddate><creator>Luo, Ye</creator><creator>Esler, Kenneth P.</creator><creator>Kent, Paul R. C.</creator><creator>Shulenburger, Luke</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7165-084X</orcidid><orcidid>https://orcid.org/0000-0002-5117-2385</orcidid><orcidid>https://orcid.org/0000-0001-5539-4017</orcidid><orcidid>https://orcid.org/0000000251172385</orcidid><orcidid>https://orcid.org/000000027165084X</orcidid><orcidid>https://orcid.org/0000000155394017</orcidid></search><sort><creationdate>20180828</creationdate><title>An efficient hybrid orbital representation for quantum Monte Carlo calculations</title><author>Luo, Ye ; Esler, Kenneth P. ; Kent, Paul R. C. ; Shulenburger, Luke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-a76f202d5cd2d8cd62a55cb8929cbb26acbd65c9999f78abee34a770eec8dbef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>basis sets</topic><topic>computer interfaces</topic><topic>Computer memory</topic><topic>electronic structure</topic><topic>Mathematical analysis</topic><topic>Monte Carlo methods</topic><topic>Quantum theory</topic><topic>Representations</topic><topic>Splines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Ye</creatorcontrib><creatorcontrib>Esler, Kenneth P.</creatorcontrib><creatorcontrib>Kent, Paul R. C.</creatorcontrib><creatorcontrib>Shulenburger, Luke</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Ye</au><au>Esler, Kenneth P.</au><au>Kent, Paul R. C.</au><au>Shulenburger, Luke</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient hybrid orbital representation for quantum Monte Carlo calculations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2018-08-28</date><risdate>2018</risdate><volume>149</volume><issue>8</issue><spage>084107</spage><epage>084107</epage><pages>084107-084107</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The scale and complexity of the quantum system to which real-space quantum Monte Carlo (QMC) can be applied in part depends on the representation and memory usage of the trial wavefunction. B-splines, the computationally most efficient basis set, can have memory requirements exceeding the capacity of a single computational node. This situation has traditionally forced a difficult choice of either using slow internode communication or a potentially less accurate but smaller basis set such as Gaussians. Here, we introduce a hybrid representation of the single particle orbitals that combine a localized atomic basis set around atomic cores and B-splines in the interstitial regions to reduce the memory usage while retaining the high speed of evaluation and either retaining or increasing overall accuracy. We present a benchmark calculation for NiO demonstrating a superior accuracy while using only one eighth of the memory required for conventional B-splines. The hybrid orbital representation therefore expands the overall range of systems that can be practically studied with QMC.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30193505</pmid><doi>10.1063/1.5037094</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7165-084X</orcidid><orcidid>https://orcid.org/0000-0002-5117-2385</orcidid><orcidid>https://orcid.org/0000-0001-5539-4017</orcidid><orcidid>https://orcid.org/0000000251172385</orcidid><orcidid>https://orcid.org/000000027165084X</orcidid><orcidid>https://orcid.org/0000000155394017</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2018-08, Vol.149 (8), p.084107-084107
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2094882648
source AIP Journals Complete; Alma/SFX Local Collection
subjects ATOMIC AND MOLECULAR PHYSICS
basis sets
computer interfaces
Computer memory
electronic structure
Mathematical analysis
Monte Carlo methods
Quantum theory
Representations
Splines
title An efficient hybrid orbital representation for quantum Monte Carlo calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20hybrid%20orbital%20representation%20for%20quantum%20Monte%20Carlo%20calculations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Luo,%20Ye&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2018-08-28&rft.volume=149&rft.issue=8&rft.spage=084107&rft.epage=084107&rft.pages=084107-084107&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5037094&rft_dat=%3Cproquest_cross%3E2101267928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2094882648&rft_id=info:pmid/30193505&rfr_iscdi=true