An efficient hybrid orbital representation for quantum Monte Carlo calculations
The scale and complexity of the quantum system to which real-space quantum Monte Carlo (QMC) can be applied in part depends on the representation and memory usage of the trial wavefunction. B-splines, the computationally most efficient basis set, can have memory requirements exceeding the capacity o...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2018-08, Vol.149 (8), p.084107-084107 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 084107 |
---|---|
container_issue | 8 |
container_start_page | 084107 |
container_title | The Journal of chemical physics |
container_volume | 149 |
creator | Luo, Ye Esler, Kenneth P. Kent, Paul R. C. Shulenburger, Luke |
description | The scale and complexity of the quantum system to which real-space quantum Monte Carlo (QMC) can be applied in part depends on the representation and memory usage of the trial wavefunction. B-splines, the computationally most efficient basis set, can have memory requirements exceeding the capacity of a single computational node. This situation has traditionally forced a difficult choice of either using slow internode communication or a potentially less accurate but smaller basis set such as Gaussians. Here, we introduce a hybrid representation of the single particle orbitals that combine a localized atomic basis set around atomic cores and B-splines in the interstitial regions to reduce the memory usage while retaining the high speed of evaluation and either retaining or increasing overall accuracy. We present a benchmark calculation for NiO demonstrating a superior accuracy while using only one eighth of the memory required for conventional B-splines. The hybrid orbital representation therefore expands the overall range of systems that can be practically studied with QMC. |
doi_str_mv | 10.1063/1.5037094 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2094882648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2101267928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-a76f202d5cd2d8cd62a55cb8929cbb26acbd65c9999f78abee34a770eec8dbef3</originalsourceid><addsrcrecordid>eNp90btuHCEUBmAUxYrXjou8QISSJrY09oGZ4VJaq_giOXKT1AiYMzLWLKyBKfz2mfVuUqQIzSn49Av-Q8gnBpcMRHvFLntoJejuHVkxULqRQsN7sgLgrNECxDE5KeUZAJjk3Qdy3ALTbQ_9ijxeR4rjGHzAWOnTq8thoCm7UO1EM24zluXC1pAiHVOmL7ONdd7QHylWpGubp0S9nfw8vZnykRyNdip4dpin5NfN95_ru-bh8fZ-ff3Q-I5BbawUIwc-9H7gg_KD4LbvvVOaa-8cF9a7QfReL2eUyjrEtrNSAqJXg8OxPSVf9rmp1GCKDxX9k08xoq-GdRKUFAv6tkfbnF5mLNVsQvE4TTZimovhDBgXUnO10K__0Oc057h8wfClWKW46HbqfK98TqVkHM02h43Nr4aB2a3CMHNYxWI_HxJnt8Hhr_zT_QIu9mD3-rf2_pP2G6x3kKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094882648</pqid></control><display><type>article</type><title>An efficient hybrid orbital representation for quantum Monte Carlo calculations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Luo, Ye ; Esler, Kenneth P. ; Kent, Paul R. C. ; Shulenburger, Luke</creator><creatorcontrib>Luo, Ye ; Esler, Kenneth P. ; Kent, Paul R. C. ; Shulenburger, Luke ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The scale and complexity of the quantum system to which real-space quantum Monte Carlo (QMC) can be applied in part depends on the representation and memory usage of the trial wavefunction. B-splines, the computationally most efficient basis set, can have memory requirements exceeding the capacity of a single computational node. This situation has traditionally forced a difficult choice of either using slow internode communication or a potentially less accurate but smaller basis set such as Gaussians. Here, we introduce a hybrid representation of the single particle orbitals that combine a localized atomic basis set around atomic cores and B-splines in the interstitial regions to reduce the memory usage while retaining the high speed of evaluation and either retaining or increasing overall accuracy. We present a benchmark calculation for NiO demonstrating a superior accuracy while using only one eighth of the memory required for conventional B-splines. The hybrid orbital representation therefore expands the overall range of systems that can be practically studied with QMC.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5037094</identifier><identifier>PMID: 30193505</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>ATOMIC AND MOLECULAR PHYSICS ; basis sets ; computer interfaces ; Computer memory ; electronic structure ; Mathematical analysis ; Monte Carlo methods ; Quantum theory ; Representations ; Splines</subject><ispartof>The Journal of chemical physics, 2018-08, Vol.149 (8), p.084107-084107</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-a76f202d5cd2d8cd62a55cb8929cbb26acbd65c9999f78abee34a770eec8dbef3</citedby><cites>FETCH-LOGICAL-c410t-a76f202d5cd2d8cd62a55cb8929cbb26acbd65c9999f78abee34a770eec8dbef3</cites><orcidid>0000-0002-7165-084X ; 0000-0002-5117-2385 ; 0000-0001-5539-4017 ; 0000000251172385 ; 000000027165084X ; 0000000155394017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5037094$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30193505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1470876$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Ye</creatorcontrib><creatorcontrib>Esler, Kenneth P.</creatorcontrib><creatorcontrib>Kent, Paul R. C.</creatorcontrib><creatorcontrib>Shulenburger, Luke</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>An efficient hybrid orbital representation for quantum Monte Carlo calculations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The scale and complexity of the quantum system to which real-space quantum Monte Carlo (QMC) can be applied in part depends on the representation and memory usage of the trial wavefunction. B-splines, the computationally most efficient basis set, can have memory requirements exceeding the capacity of a single computational node. This situation has traditionally forced a difficult choice of either using slow internode communication or a potentially less accurate but smaller basis set such as Gaussians. Here, we introduce a hybrid representation of the single particle orbitals that combine a localized atomic basis set around atomic cores and B-splines in the interstitial regions to reduce the memory usage while retaining the high speed of evaluation and either retaining or increasing overall accuracy. We present a benchmark calculation for NiO demonstrating a superior accuracy while using only one eighth of the memory required for conventional B-splines. The hybrid orbital representation therefore expands the overall range of systems that can be practically studied with QMC.</description><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>basis sets</subject><subject>computer interfaces</subject><subject>Computer memory</subject><subject>electronic structure</subject><subject>Mathematical analysis</subject><subject>Monte Carlo methods</subject><subject>Quantum theory</subject><subject>Representations</subject><subject>Splines</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90btuHCEUBmAUxYrXjou8QISSJrY09oGZ4VJaq_giOXKT1AiYMzLWLKyBKfz2mfVuUqQIzSn49Av-Q8gnBpcMRHvFLntoJejuHVkxULqRQsN7sgLgrNECxDE5KeUZAJjk3Qdy3ALTbQ_9ijxeR4rjGHzAWOnTq8thoCm7UO1EM24zluXC1pAiHVOmL7ONdd7QHylWpGubp0S9nfw8vZnykRyNdip4dpin5NfN95_ru-bh8fZ-ff3Q-I5BbawUIwc-9H7gg_KD4LbvvVOaa-8cF9a7QfReL2eUyjrEtrNSAqJXg8OxPSVf9rmp1GCKDxX9k08xoq-GdRKUFAv6tkfbnF5mLNVsQvE4TTZimovhDBgXUnO10K__0Oc057h8wfClWKW46HbqfK98TqVkHM02h43Nr4aB2a3CMHNYxWI_HxJnt8Hhr_zT_QIu9mD3-rf2_pP2G6x3kKw</recordid><startdate>20180828</startdate><enddate>20180828</enddate><creator>Luo, Ye</creator><creator>Esler, Kenneth P.</creator><creator>Kent, Paul R. C.</creator><creator>Shulenburger, Luke</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7165-084X</orcidid><orcidid>https://orcid.org/0000-0002-5117-2385</orcidid><orcidid>https://orcid.org/0000-0001-5539-4017</orcidid><orcidid>https://orcid.org/0000000251172385</orcidid><orcidid>https://orcid.org/000000027165084X</orcidid><orcidid>https://orcid.org/0000000155394017</orcidid></search><sort><creationdate>20180828</creationdate><title>An efficient hybrid orbital representation for quantum Monte Carlo calculations</title><author>Luo, Ye ; Esler, Kenneth P. ; Kent, Paul R. C. ; Shulenburger, Luke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-a76f202d5cd2d8cd62a55cb8929cbb26acbd65c9999f78abee34a770eec8dbef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>basis sets</topic><topic>computer interfaces</topic><topic>Computer memory</topic><topic>electronic structure</topic><topic>Mathematical analysis</topic><topic>Monte Carlo methods</topic><topic>Quantum theory</topic><topic>Representations</topic><topic>Splines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Ye</creatorcontrib><creatorcontrib>Esler, Kenneth P.</creatorcontrib><creatorcontrib>Kent, Paul R. C.</creatorcontrib><creatorcontrib>Shulenburger, Luke</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Ye</au><au>Esler, Kenneth P.</au><au>Kent, Paul R. C.</au><au>Shulenburger, Luke</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient hybrid orbital representation for quantum Monte Carlo calculations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2018-08-28</date><risdate>2018</risdate><volume>149</volume><issue>8</issue><spage>084107</spage><epage>084107</epage><pages>084107-084107</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The scale and complexity of the quantum system to which real-space quantum Monte Carlo (QMC) can be applied in part depends on the representation and memory usage of the trial wavefunction. B-splines, the computationally most efficient basis set, can have memory requirements exceeding the capacity of a single computational node. This situation has traditionally forced a difficult choice of either using slow internode communication or a potentially less accurate but smaller basis set such as Gaussians. Here, we introduce a hybrid representation of the single particle orbitals that combine a localized atomic basis set around atomic cores and B-splines in the interstitial regions to reduce the memory usage while retaining the high speed of evaluation and either retaining or increasing overall accuracy. We present a benchmark calculation for NiO demonstrating a superior accuracy while using only one eighth of the memory required for conventional B-splines. The hybrid orbital representation therefore expands the overall range of systems that can be practically studied with QMC.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30193505</pmid><doi>10.1063/1.5037094</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7165-084X</orcidid><orcidid>https://orcid.org/0000-0002-5117-2385</orcidid><orcidid>https://orcid.org/0000-0001-5539-4017</orcidid><orcidid>https://orcid.org/0000000251172385</orcidid><orcidid>https://orcid.org/000000027165084X</orcidid><orcidid>https://orcid.org/0000000155394017</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2018-08, Vol.149 (8), p.084107-084107 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_2094882648 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | ATOMIC AND MOLECULAR PHYSICS basis sets computer interfaces Computer memory electronic structure Mathematical analysis Monte Carlo methods Quantum theory Representations Splines |
title | An efficient hybrid orbital representation for quantum Monte Carlo calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20hybrid%20orbital%20representation%20for%20quantum%20Monte%20Carlo%20calculations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Luo,%20Ye&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2018-08-28&rft.volume=149&rft.issue=8&rft.spage=084107&rft.epage=084107&rft.pages=084107-084107&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5037094&rft_dat=%3Cproquest_cross%3E2101267928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2094882648&rft_id=info:pmid/30193505&rfr_iscdi=true |