Inhibition of Enzymatic Degradation of Adhesive-Dentin Interfaces

Adhesive procedures activate dentin-associated matrix metalloproteinases (MMPs), and so iatrogenically initiate bond degradation. We hypothesized that adding MMP inhibitors to adhesive primers may prevent this endogenous enzymatic degradation, thereby improving bond durability. A non-specific MMP in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dental research 2009-12, Vol.88 (12), p.1101-1106
Hauptverfasser: De Munck, J., Van den Steen, P.E., Mine, A., Van Landuyt, K.L., Poitevin, A., Opdenakker, G., Van Meerbeek, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adhesive procedures activate dentin-associated matrix metalloproteinases (MMPs), and so iatrogenically initiate bond degradation. We hypothesized that adding MMP inhibitors to adhesive primers may prevent this endogenous enzymatic degradation, thereby improving bond durability. A non-specific MMP inhibitor (chlorhexidine) and a MMP-2/9-specific inhibitor (SB-3CT) were admixed to the primers of an etch & rinse and a self-etch adhesive, both considered as gold-standard adhesives within their respective categories. For dentin powder exposed to the adhesives under clinical application conditions, gelatin zymography revealed the release of MMP-2 (not of MMP-9) by the etch & rinse adhesive, while no release of enzymes could be detected for the mild self-etch adhesive, most likely because of its limited dentin demineralization effect. The built-in MMP inhibitors appeared effective in reducing bond degradation only for the etch & rinse adhesive, and not for the self-etch adhesive. Water sorption of adhesive interfaces most likely remains the principal mechanism of bond degradation, while endogenous enzymes appear to contribute to bond degradation of only etch & rinse adhesives.
ISSN:0022-0345
1544-0591
DOI:10.1177/0022034509346952