Risk-averse formulations and methods for a virtual power plant
•Risk-neutral and risk-averse stochastic programming formulations are considered.•Implementation of decomposition methods to handle the CVaR.•Wind ensembles used to characterize the wind speed uncertainty.•Extensive computational results for performance and risk management analysis.•The parallel sol...
Gespeichert in:
Veröffentlicht in: | Computers & operations research 2018-08, Vol.96, p.350-373 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 373 |
---|---|
container_issue | |
container_start_page | 350 |
container_title | Computers & operations research |
container_volume | 96 |
creator | Lima, Ricardo M. Conejo, Antonio J. Langodan, Sabique Hoteit, Ibrahim Knio, Omar M. |
description | •Risk-neutral and risk-averse stochastic programming formulations are considered.•Implementation of decomposition methods to handle the CVaR.•Wind ensembles used to characterize the wind speed uncertainty.•Extensive computational results for performance and risk management analysis.•The parallel solution of the sub-problems is paramount to obtain efficient methods.
In this paper, we address the optimal operation of a virtual power plant using stochastic programming. We consider one risk-neutral and two risk-averse formulations that rely on the conditional value at risk. To handle large-scale problems, we implement two decomposition methods with variants using single- and multiple-cuts. We propose the utilization of wind ensembles obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) to quantify the uncertainty of the wind forecast. We present detailed results relative to the computational performance of the risk-averse formulations, the decomposition methods, and risk management and sensitivities analysis as a function of the number of scenarios and risk parameters. The implementation of the two decomposition methods relies on the parallel solution of subproblems, which turns out to be paramount for computational efficiency. The results show that one of the two decomposition methods is the most efficient. |
doi_str_mv | 10.1016/j.cor.2017.12.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2094498546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054817303076</els_id><sourcerecordid>2094498546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-c4baab8ba57e819ee90619288e9d90d36414cbbe2dc7e6aacbbbf4c8f545b7103</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK4-gLeC59ZJmjYpgiCLq8KCIAreQppOMbXb1KRd8e3Nsp6dw8zA_P_M8BFySSGjQMvrLjPOZwyoyCjLAMQRWVAp8lSUxfsxWUAORQoFl6fkLIQOYghGF-T2xYbPVO_QB0xa57dzryfrhpDooUm2OH24JuwHiU521k-z7pPRfaNPxl4P0zk5aXUf8OKvLsnb-v519Zhunh-eVneb1HCAKeZa61rWuhAoaYVYQUkrJiVWTQVNXnLKTV0ja4zAUuvY1y03si14UQsK-ZJcHfaO3n3NGCbVudkP8aRiUHFeyYKXUUUPKuNdCB5bNXq71f5HUVB7TKpTEZPaY1KUqcggem4OHozv7yx6FYzFwWBjPZpJNc7-4_4F9FBwrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094498546</pqid></control><display><type>article</type><title>Risk-averse formulations and methods for a virtual power plant</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lima, Ricardo M. ; Conejo, Antonio J. ; Langodan, Sabique ; Hoteit, Ibrahim ; Knio, Omar M.</creator><creatorcontrib>Lima, Ricardo M. ; Conejo, Antonio J. ; Langodan, Sabique ; Hoteit, Ibrahim ; Knio, Omar M.</creatorcontrib><description>•Risk-neutral and risk-averse stochastic programming formulations are considered.•Implementation of decomposition methods to handle the CVaR.•Wind ensembles used to characterize the wind speed uncertainty.•Extensive computational results for performance and risk management analysis.•The parallel solution of the sub-problems is paramount to obtain efficient methods.
In this paper, we address the optimal operation of a virtual power plant using stochastic programming. We consider one risk-neutral and two risk-averse formulations that rely on the conditional value at risk. To handle large-scale problems, we implement two decomposition methods with variants using single- and multiple-cuts. We propose the utilization of wind ensembles obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) to quantify the uncertainty of the wind forecast. We present detailed results relative to the computational performance of the risk-averse formulations, the decomposition methods, and risk management and sensitivities analysis as a function of the number of scenarios and risk parameters. The implementation of the two decomposition methods relies on the parallel solution of subproblems, which turns out to be paramount for computational efficiency. The results show that one of the two decomposition methods is the most efficient.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2017.12.007</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Computing time ; Conditional value at risk ; Decomposition ; Electric power generation ; Energy ; Formulations ; Operations research ; Optimization ; Optimization under uncertainty ; Power plants ; Risk analysis ; Risk management ; Sensitivity analysis ; Stochastic models ; Stochastic programming ; Studies ; Uncertainty ; Virtual power plant ; Virtual power plants ; Weather forecasting</subject><ispartof>Computers & operations research, 2018-08, Vol.96, p.350-373</ispartof><rights>2017</rights><rights>Copyright Pergamon Press Inc. Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-c4baab8ba57e819ee90619288e9d90d36414cbbe2dc7e6aacbbbf4c8f545b7103</citedby><cites>FETCH-LOGICAL-c400t-c4baab8ba57e819ee90619288e9d90d36414cbbe2dc7e6aacbbbf4c8f545b7103</cites><orcidid>0000-0002-5735-6089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cor.2017.12.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids></links><search><creatorcontrib>Lima, Ricardo M.</creatorcontrib><creatorcontrib>Conejo, Antonio J.</creatorcontrib><creatorcontrib>Langodan, Sabique</creatorcontrib><creatorcontrib>Hoteit, Ibrahim</creatorcontrib><creatorcontrib>Knio, Omar M.</creatorcontrib><title>Risk-averse formulations and methods for a virtual power plant</title><title>Computers & operations research</title><description>•Risk-neutral and risk-averse stochastic programming formulations are considered.•Implementation of decomposition methods to handle the CVaR.•Wind ensembles used to characterize the wind speed uncertainty.•Extensive computational results for performance and risk management analysis.•The parallel solution of the sub-problems is paramount to obtain efficient methods.
In this paper, we address the optimal operation of a virtual power plant using stochastic programming. We consider one risk-neutral and two risk-averse formulations that rely on the conditional value at risk. To handle large-scale problems, we implement two decomposition methods with variants using single- and multiple-cuts. We propose the utilization of wind ensembles obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) to quantify the uncertainty of the wind forecast. We present detailed results relative to the computational performance of the risk-averse formulations, the decomposition methods, and risk management and sensitivities analysis as a function of the number of scenarios and risk parameters. The implementation of the two decomposition methods relies on the parallel solution of subproblems, which turns out to be paramount for computational efficiency. The results show that one of the two decomposition methods is the most efficient.</description><subject>Computing time</subject><subject>Conditional value at risk</subject><subject>Decomposition</subject><subject>Electric power generation</subject><subject>Energy</subject><subject>Formulations</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Optimization under uncertainty</subject><subject>Power plants</subject><subject>Risk analysis</subject><subject>Risk management</subject><subject>Sensitivity analysis</subject><subject>Stochastic models</subject><subject>Stochastic programming</subject><subject>Studies</subject><subject>Uncertainty</subject><subject>Virtual power plant</subject><subject>Virtual power plants</subject><subject>Weather forecasting</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK4-gLeC59ZJmjYpgiCLq8KCIAreQppOMbXb1KRd8e3Nsp6dw8zA_P_M8BFySSGjQMvrLjPOZwyoyCjLAMQRWVAp8lSUxfsxWUAORQoFl6fkLIQOYghGF-T2xYbPVO_QB0xa57dzryfrhpDooUm2OH24JuwHiU521k-z7pPRfaNPxl4P0zk5aXUf8OKvLsnb-v519Zhunh-eVneb1HCAKeZa61rWuhAoaYVYQUkrJiVWTQVNXnLKTV0ja4zAUuvY1y03si14UQsK-ZJcHfaO3n3NGCbVudkP8aRiUHFeyYKXUUUPKuNdCB5bNXq71f5HUVB7TKpTEZPaY1KUqcggem4OHozv7yx6FYzFwWBjPZpJNc7-4_4F9FBwrw</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Lima, Ricardo M.</creator><creator>Conejo, Antonio J.</creator><creator>Langodan, Sabique</creator><creator>Hoteit, Ibrahim</creator><creator>Knio, Omar M.</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5735-6089</orcidid></search><sort><creationdate>20180801</creationdate><title>Risk-averse formulations and methods for a virtual power plant</title><author>Lima, Ricardo M. ; Conejo, Antonio J. ; Langodan, Sabique ; Hoteit, Ibrahim ; Knio, Omar M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-c4baab8ba57e819ee90619288e9d90d36414cbbe2dc7e6aacbbbf4c8f545b7103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computing time</topic><topic>Conditional value at risk</topic><topic>Decomposition</topic><topic>Electric power generation</topic><topic>Energy</topic><topic>Formulations</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Optimization under uncertainty</topic><topic>Power plants</topic><topic>Risk analysis</topic><topic>Risk management</topic><topic>Sensitivity analysis</topic><topic>Stochastic models</topic><topic>Stochastic programming</topic><topic>Studies</topic><topic>Uncertainty</topic><topic>Virtual power plant</topic><topic>Virtual power plants</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima, Ricardo M.</creatorcontrib><creatorcontrib>Conejo, Antonio J.</creatorcontrib><creatorcontrib>Langodan, Sabique</creatorcontrib><creatorcontrib>Hoteit, Ibrahim</creatorcontrib><creatorcontrib>Knio, Omar M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima, Ricardo M.</au><au>Conejo, Antonio J.</au><au>Langodan, Sabique</au><au>Hoteit, Ibrahim</au><au>Knio, Omar M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk-averse formulations and methods for a virtual power plant</atitle><jtitle>Computers & operations research</jtitle><date>2018-08-01</date><risdate>2018</risdate><volume>96</volume><spage>350</spage><epage>373</epage><pages>350-373</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><abstract>•Risk-neutral and risk-averse stochastic programming formulations are considered.•Implementation of decomposition methods to handle the CVaR.•Wind ensembles used to characterize the wind speed uncertainty.•Extensive computational results for performance and risk management analysis.•The parallel solution of the sub-problems is paramount to obtain efficient methods.
In this paper, we address the optimal operation of a virtual power plant using stochastic programming. We consider one risk-neutral and two risk-averse formulations that rely on the conditional value at risk. To handle large-scale problems, we implement two decomposition methods with variants using single- and multiple-cuts. We propose the utilization of wind ensembles obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) to quantify the uncertainty of the wind forecast. We present detailed results relative to the computational performance of the risk-averse formulations, the decomposition methods, and risk management and sensitivities analysis as a function of the number of scenarios and risk parameters. The implementation of the two decomposition methods relies on the parallel solution of subproblems, which turns out to be paramount for computational efficiency. The results show that one of the two decomposition methods is the most efficient.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2017.12.007</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-5735-6089</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0548 |
ispartof | Computers & operations research, 2018-08, Vol.96, p.350-373 |
issn | 0305-0548 1873-765X 0305-0548 |
language | eng |
recordid | cdi_proquest_journals_2094498546 |
source | Access via ScienceDirect (Elsevier) |
subjects | Computing time Conditional value at risk Decomposition Electric power generation Energy Formulations Operations research Optimization Optimization under uncertainty Power plants Risk analysis Risk management Sensitivity analysis Stochastic models Stochastic programming Studies Uncertainty Virtual power plant Virtual power plants Weather forecasting |
title | Risk-averse formulations and methods for a virtual power plant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk-averse%20formulations%20and%20methods%20for%20a%20virtual%20power%20plant&rft.jtitle=Computers%20&%20operations%20research&rft.au=Lima,%20Ricardo%20M.&rft.date=2018-08-01&rft.volume=96&rft.spage=350&rft.epage=373&rft.pages=350-373&rft.issn=0305-0548&rft.eissn=1873-765X&rft_id=info:doi/10.1016/j.cor.2017.12.007&rft_dat=%3Cproquest_cross%3E2094498546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2094498546&rft_id=info:pmid/&rft_els_id=S0305054817303076&rfr_iscdi=true |