Risk-averse formulations and methods for a virtual power plant

•Risk-neutral and risk-averse stochastic programming formulations are considered.•Implementation of decomposition methods to handle the CVaR.•Wind ensembles used to characterize the wind speed uncertainty.•Extensive computational results for performance and risk management analysis.•The parallel sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2018-08, Vol.96, p.350-373
Hauptverfasser: Lima, Ricardo M., Conejo, Antonio J., Langodan, Sabique, Hoteit, Ibrahim, Knio, Omar M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 373
container_issue
container_start_page 350
container_title Computers & operations research
container_volume 96
creator Lima, Ricardo M.
Conejo, Antonio J.
Langodan, Sabique
Hoteit, Ibrahim
Knio, Omar M.
description •Risk-neutral and risk-averse stochastic programming formulations are considered.•Implementation of decomposition methods to handle the CVaR.•Wind ensembles used to characterize the wind speed uncertainty.•Extensive computational results for performance and risk management analysis.•The parallel solution of the sub-problems is paramount to obtain efficient methods. In this paper, we address the optimal operation of a virtual power plant using stochastic programming. We consider one risk-neutral and two risk-averse formulations that rely on the conditional value at risk. To handle large-scale problems, we implement two decomposition methods with variants using single- and multiple-cuts. We propose the utilization of wind ensembles obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) to quantify the uncertainty of the wind forecast. We present detailed results relative to the computational performance of the risk-averse formulations, the decomposition methods, and risk management and sensitivities analysis as a function of the number of scenarios and risk parameters. The implementation of the two decomposition methods relies on the parallel solution of subproblems, which turns out to be paramount for computational efficiency. The results show that one of the two decomposition methods is the most efficient.
doi_str_mv 10.1016/j.cor.2017.12.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2094498546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054817303076</els_id><sourcerecordid>2094498546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-c4baab8ba57e819ee90619288e9d90d36414cbbe2dc7e6aacbbbf4c8f545b7103</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK4-gLeC59ZJmjYpgiCLq8KCIAreQppOMbXb1KRd8e3Nsp6dw8zA_P_M8BFySSGjQMvrLjPOZwyoyCjLAMQRWVAp8lSUxfsxWUAORQoFl6fkLIQOYghGF-T2xYbPVO_QB0xa57dzryfrhpDooUm2OH24JuwHiU521k-z7pPRfaNPxl4P0zk5aXUf8OKvLsnb-v519Zhunh-eVneb1HCAKeZa61rWuhAoaYVYQUkrJiVWTQVNXnLKTV0ja4zAUuvY1y03si14UQsK-ZJcHfaO3n3NGCbVudkP8aRiUHFeyYKXUUUPKuNdCB5bNXq71f5HUVB7TKpTEZPaY1KUqcggem4OHozv7yx6FYzFwWBjPZpJNc7-4_4F9FBwrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094498546</pqid></control><display><type>article</type><title>Risk-averse formulations and methods for a virtual power plant</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lima, Ricardo M. ; Conejo, Antonio J. ; Langodan, Sabique ; Hoteit, Ibrahim ; Knio, Omar M.</creator><creatorcontrib>Lima, Ricardo M. ; Conejo, Antonio J. ; Langodan, Sabique ; Hoteit, Ibrahim ; Knio, Omar M.</creatorcontrib><description>•Risk-neutral and risk-averse stochastic programming formulations are considered.•Implementation of decomposition methods to handle the CVaR.•Wind ensembles used to characterize the wind speed uncertainty.•Extensive computational results for performance and risk management analysis.•The parallel solution of the sub-problems is paramount to obtain efficient methods. In this paper, we address the optimal operation of a virtual power plant using stochastic programming. We consider one risk-neutral and two risk-averse formulations that rely on the conditional value at risk. To handle large-scale problems, we implement two decomposition methods with variants using single- and multiple-cuts. We propose the utilization of wind ensembles obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) to quantify the uncertainty of the wind forecast. We present detailed results relative to the computational performance of the risk-averse formulations, the decomposition methods, and risk management and sensitivities analysis as a function of the number of scenarios and risk parameters. The implementation of the two decomposition methods relies on the parallel solution of subproblems, which turns out to be paramount for computational efficiency. The results show that one of the two decomposition methods is the most efficient.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2017.12.007</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Computing time ; Conditional value at risk ; Decomposition ; Electric power generation ; Energy ; Formulations ; Operations research ; Optimization ; Optimization under uncertainty ; Power plants ; Risk analysis ; Risk management ; Sensitivity analysis ; Stochastic models ; Stochastic programming ; Studies ; Uncertainty ; Virtual power plant ; Virtual power plants ; Weather forecasting</subject><ispartof>Computers &amp; operations research, 2018-08, Vol.96, p.350-373</ispartof><rights>2017</rights><rights>Copyright Pergamon Press Inc. Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-c4baab8ba57e819ee90619288e9d90d36414cbbe2dc7e6aacbbbf4c8f545b7103</citedby><cites>FETCH-LOGICAL-c400t-c4baab8ba57e819ee90619288e9d90d36414cbbe2dc7e6aacbbbf4c8f545b7103</cites><orcidid>0000-0002-5735-6089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cor.2017.12.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids></links><search><creatorcontrib>Lima, Ricardo M.</creatorcontrib><creatorcontrib>Conejo, Antonio J.</creatorcontrib><creatorcontrib>Langodan, Sabique</creatorcontrib><creatorcontrib>Hoteit, Ibrahim</creatorcontrib><creatorcontrib>Knio, Omar M.</creatorcontrib><title>Risk-averse formulations and methods for a virtual power plant</title><title>Computers &amp; operations research</title><description>•Risk-neutral and risk-averse stochastic programming formulations are considered.•Implementation of decomposition methods to handle the CVaR.•Wind ensembles used to characterize the wind speed uncertainty.•Extensive computational results for performance and risk management analysis.•The parallel solution of the sub-problems is paramount to obtain efficient methods. In this paper, we address the optimal operation of a virtual power plant using stochastic programming. We consider one risk-neutral and two risk-averse formulations that rely on the conditional value at risk. To handle large-scale problems, we implement two decomposition methods with variants using single- and multiple-cuts. We propose the utilization of wind ensembles obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) to quantify the uncertainty of the wind forecast. We present detailed results relative to the computational performance of the risk-averse formulations, the decomposition methods, and risk management and sensitivities analysis as a function of the number of scenarios and risk parameters. The implementation of the two decomposition methods relies on the parallel solution of subproblems, which turns out to be paramount for computational efficiency. The results show that one of the two decomposition methods is the most efficient.</description><subject>Computing time</subject><subject>Conditional value at risk</subject><subject>Decomposition</subject><subject>Electric power generation</subject><subject>Energy</subject><subject>Formulations</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Optimization under uncertainty</subject><subject>Power plants</subject><subject>Risk analysis</subject><subject>Risk management</subject><subject>Sensitivity analysis</subject><subject>Stochastic models</subject><subject>Stochastic programming</subject><subject>Studies</subject><subject>Uncertainty</subject><subject>Virtual power plant</subject><subject>Virtual power plants</subject><subject>Weather forecasting</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK4-gLeC59ZJmjYpgiCLq8KCIAreQppOMbXb1KRd8e3Nsp6dw8zA_P_M8BFySSGjQMvrLjPOZwyoyCjLAMQRWVAp8lSUxfsxWUAORQoFl6fkLIQOYghGF-T2xYbPVO_QB0xa57dzryfrhpDooUm2OH24JuwHiU521k-z7pPRfaNPxl4P0zk5aXUf8OKvLsnb-v519Zhunh-eVneb1HCAKeZa61rWuhAoaYVYQUkrJiVWTQVNXnLKTV0ja4zAUuvY1y03si14UQsK-ZJcHfaO3n3NGCbVudkP8aRiUHFeyYKXUUUPKuNdCB5bNXq71f5HUVB7TKpTEZPaY1KUqcggem4OHozv7yx6FYzFwWBjPZpJNc7-4_4F9FBwrw</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Lima, Ricardo M.</creator><creator>Conejo, Antonio J.</creator><creator>Langodan, Sabique</creator><creator>Hoteit, Ibrahim</creator><creator>Knio, Omar M.</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5735-6089</orcidid></search><sort><creationdate>20180801</creationdate><title>Risk-averse formulations and methods for a virtual power plant</title><author>Lima, Ricardo M. ; Conejo, Antonio J. ; Langodan, Sabique ; Hoteit, Ibrahim ; Knio, Omar M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-c4baab8ba57e819ee90619288e9d90d36414cbbe2dc7e6aacbbbf4c8f545b7103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computing time</topic><topic>Conditional value at risk</topic><topic>Decomposition</topic><topic>Electric power generation</topic><topic>Energy</topic><topic>Formulations</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Optimization under uncertainty</topic><topic>Power plants</topic><topic>Risk analysis</topic><topic>Risk management</topic><topic>Sensitivity analysis</topic><topic>Stochastic models</topic><topic>Stochastic programming</topic><topic>Studies</topic><topic>Uncertainty</topic><topic>Virtual power plant</topic><topic>Virtual power plants</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima, Ricardo M.</creatorcontrib><creatorcontrib>Conejo, Antonio J.</creatorcontrib><creatorcontrib>Langodan, Sabique</creatorcontrib><creatorcontrib>Hoteit, Ibrahim</creatorcontrib><creatorcontrib>Knio, Omar M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima, Ricardo M.</au><au>Conejo, Antonio J.</au><au>Langodan, Sabique</au><au>Hoteit, Ibrahim</au><au>Knio, Omar M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk-averse formulations and methods for a virtual power plant</atitle><jtitle>Computers &amp; operations research</jtitle><date>2018-08-01</date><risdate>2018</risdate><volume>96</volume><spage>350</spage><epage>373</epage><pages>350-373</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><abstract>•Risk-neutral and risk-averse stochastic programming formulations are considered.•Implementation of decomposition methods to handle the CVaR.•Wind ensembles used to characterize the wind speed uncertainty.•Extensive computational results for performance and risk management analysis.•The parallel solution of the sub-problems is paramount to obtain efficient methods. In this paper, we address the optimal operation of a virtual power plant using stochastic programming. We consider one risk-neutral and two risk-averse formulations that rely on the conditional value at risk. To handle large-scale problems, we implement two decomposition methods with variants using single- and multiple-cuts. We propose the utilization of wind ensembles obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) to quantify the uncertainty of the wind forecast. We present detailed results relative to the computational performance of the risk-averse formulations, the decomposition methods, and risk management and sensitivities analysis as a function of the number of scenarios and risk parameters. The implementation of the two decomposition methods relies on the parallel solution of subproblems, which turns out to be paramount for computational efficiency. The results show that one of the two decomposition methods is the most efficient.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2017.12.007</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-5735-6089</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2018-08, Vol.96, p.350-373
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_proquest_journals_2094498546
source Access via ScienceDirect (Elsevier)
subjects Computing time
Conditional value at risk
Decomposition
Electric power generation
Energy
Formulations
Operations research
Optimization
Optimization under uncertainty
Power plants
Risk analysis
Risk management
Sensitivity analysis
Stochastic models
Stochastic programming
Studies
Uncertainty
Virtual power plant
Virtual power plants
Weather forecasting
title Risk-averse formulations and methods for a virtual power plant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk-averse%20formulations%20and%20methods%20for%20a%20virtual%20power%20plant&rft.jtitle=Computers%20&%20operations%20research&rft.au=Lima,%20Ricardo%20M.&rft.date=2018-08-01&rft.volume=96&rft.spage=350&rft.epage=373&rft.pages=350-373&rft.issn=0305-0548&rft.eissn=1873-765X&rft_id=info:doi/10.1016/j.cor.2017.12.007&rft_dat=%3Cproquest_cross%3E2094498546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2094498546&rft_id=info:pmid/&rft_els_id=S0305054817303076&rfr_iscdi=true