Expanding the size of multi-parameter metasomatic footprints in gold exploration: utilization of mafic dykes in the Canadian Malartic district, Québec, Canada
Ore-forming hydrothermal fluids react differently with different country rocks, but few studies have applied this knowledge with the specific goal of expanding the size of hydrothermal footprints in mineral exploration. To develop this concept, 122 metamorphosed mafic dykes from the world-class Cana...
Gespeichert in:
Veröffentlicht in: | Mineralium deposita 2019-06, Vol.54 (5), p.761-786 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 786 |
---|---|
container_issue | 5 |
container_start_page | 761 |
container_title | Mineralium deposita |
container_volume | 54 |
creator | Perrouty, Stéphane Linnen, Robert L. Lesher, C. Michael Olivo, Gema R. Piercey, Stephen J. Gaillard, Nicolas Clark, James R. Enkin, Randolph J. |
description | Ore-forming hydrothermal fluids react differently with different country rocks, but few studies have applied this knowledge with the specific goal of expanding the size of hydrothermal footprints in mineral exploration. To develop this concept, 122 metamorphosed mafic dykes from the world-class Canadian Malartic gold district (18.6 Moz Au) were sampled and analyzed for mineralogy, physical properties, and lithogeochemistry (partial and total digestion). The mafic dykes intrude mainly metasedimentary rocks, post-date D
1
deformation, and cross-cut early-D
2
quartz monzodiorite intrusions, but they were deformed and altered during D
2
deformation, mineralization, and metamorphism. They can be subdivided into three groups: Group 1 dykes are least-altered, characterized by amphibole-rich regional metamorphic assemblages and distributed throughout the Pontiac Subprovince. Group 2 and 3 dykes underwent ore-related hydrothermal biotite–calcite–pyrite alteration and are associated with density- and volume-adjusted concentration gains of over 100% in Au–W–Te–C–S–Ag–Cs–Mo–Cu–K–Rb–Se–U–Pb–Ba–F–Bi–Sn. They define a metasomatic footprint up to 6 km away from the deposit toward the SE and up to 2 km away from the deposit toward the SW. Fifty-eight variables that define halos around the Canadian Malartic deposit have been identified and integrated using principal component analysis. PC1 explains 30% of the variance, separates least-mobile elements from ore-related elements, and is interpreted to reflect the ore-forming alteration process. PC2 and PC3 represent igneous processes. PC4 highlights the calcite–pyrite and biotite alteration. Spatial variations of the modal abundances of amphibole, biotite, calcite, and pyrite are the simplest expression of the metasomatic footprint, and they can easily be documented during exploration at the camp scale. |
doi_str_mv | 10.1007/s00126-018-0829-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2093908844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093908844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-95d7a11bd0aaf056fbe3f9d3b75c144ffb6e356089301db4f4fc2064f9356ebf3</originalsourceid><addsrcrecordid>eNp1Uc1q3DAQFqWBbjd9gN4EvcbJyJa9Vm9lyR8khEJyFmNL2mrrtVxJhs2-TM95jrxY5HWgp15mmJnvB-Yj5CuDcwawuggALK8yYHUGdS6y_QeyYLzIM1ZX1UeyAEhXXor6E_kcwhYABOOwIH8v9wP2yvYbGn9pGuxBU2fobuyizQb0uNNRe5oqBrfDaFtqnIuDt30M1PZ04zpF9X7onE9X13-nY7SdPRyHoxSaRFLPv_URP7mssUdlsaf32KGfNJUN0ds2ntGf4-tLo9uzGYSn5MRgF_SX974kT1eXj-ub7O7h-nb94y5rC1bFTJRqhYw1ChANlJVpdGGEKppV2TLOjWkqXZQV1KIAphpuuGlzqLgRaasbUyzJt1l38O7PqEOUWzf6PlnKHEQhoK45Tyg2o1rvQvDayPSIHfpnyUBOOcg5B5lykFMOcp84-cwJ09M22v9T_j_pDb-hj7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093908844</pqid></control><display><type>article</type><title>Expanding the size of multi-parameter metasomatic footprints in gold exploration: utilization of mafic dykes in the Canadian Malartic district, Québec, Canada</title><source>SpringerLink Journals</source><creator>Perrouty, Stéphane ; Linnen, Robert L. ; Lesher, C. Michael ; Olivo, Gema R. ; Piercey, Stephen J. ; Gaillard, Nicolas ; Clark, James R. ; Enkin, Randolph J.</creator><creatorcontrib>Perrouty, Stéphane ; Linnen, Robert L. ; Lesher, C. Michael ; Olivo, Gema R. ; Piercey, Stephen J. ; Gaillard, Nicolas ; Clark, James R. ; Enkin, Randolph J.</creatorcontrib><description>Ore-forming hydrothermal fluids react differently with different country rocks, but few studies have applied this knowledge with the specific goal of expanding the size of hydrothermal footprints in mineral exploration. To develop this concept, 122 metamorphosed mafic dykes from the world-class Canadian Malartic gold district (18.6 Moz Au) were sampled and analyzed for mineralogy, physical properties, and lithogeochemistry (partial and total digestion). The mafic dykes intrude mainly metasedimentary rocks, post-date D
1
deformation, and cross-cut early-D
2
quartz monzodiorite intrusions, but they were deformed and altered during D
2
deformation, mineralization, and metamorphism. They can be subdivided into three groups: Group 1 dykes are least-altered, characterized by amphibole-rich regional metamorphic assemblages and distributed throughout the Pontiac Subprovince. Group 2 and 3 dykes underwent ore-related hydrothermal biotite–calcite–pyrite alteration and are associated with density- and volume-adjusted concentration gains of over 100% in Au–W–Te–C–S–Ag–Cs–Mo–Cu–K–Rb–Se–U–Pb–Ba–F–Bi–Sn. They define a metasomatic footprint up to 6 km away from the deposit toward the SE and up to 2 km away from the deposit toward the SW. Fifty-eight variables that define halos around the Canadian Malartic deposit have been identified and integrated using principal component analysis. PC1 explains 30% of the variance, separates least-mobile elements from ore-related elements, and is interpreted to reflect the ore-forming alteration process. PC2 and PC3 represent igneous processes. PC4 highlights the calcite–pyrite and biotite alteration. Spatial variations of the modal abundances of amphibole, biotite, calcite, and pyrite are the simplest expression of the metasomatic footprint, and they can easily be documented during exploration at the camp scale.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-018-0829-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biotite ; Calcite ; Copper ; Deformation ; Deformation mechanisms ; Earth and Environmental Science ; Earth Sciences ; Fluids ; Footprints ; Geology ; Gold ; Halos ; Lead ; Lithogeochemistry ; Magma ; Metamorphism ; Metamorphism (geology) ; Mineral exploration ; Mineral Resources ; Mineralization ; Mineralogy ; Physical properties ; Principal components analysis ; Pyrite ; Rock ; Rock intrusions ; Rocks ; Selenium ; Silver ; Spatial distribution ; Spatial variations ; Tin ; Variance analysis</subject><ispartof>Mineralium deposita, 2019-06, Vol.54 (5), p.761-786</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018. corrected publication 2018</rights><rights>Mineralium Deposita is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-95d7a11bd0aaf056fbe3f9d3b75c144ffb6e356089301db4f4fc2064f9356ebf3</citedby><cites>FETCH-LOGICAL-c316t-95d7a11bd0aaf056fbe3f9d3b75c144ffb6e356089301db4f4fc2064f9356ebf3</cites><orcidid>0000-0002-0887-0719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00126-018-0829-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00126-018-0829-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Perrouty, Stéphane</creatorcontrib><creatorcontrib>Linnen, Robert L.</creatorcontrib><creatorcontrib>Lesher, C. Michael</creatorcontrib><creatorcontrib>Olivo, Gema R.</creatorcontrib><creatorcontrib>Piercey, Stephen J.</creatorcontrib><creatorcontrib>Gaillard, Nicolas</creatorcontrib><creatorcontrib>Clark, James R.</creatorcontrib><creatorcontrib>Enkin, Randolph J.</creatorcontrib><title>Expanding the size of multi-parameter metasomatic footprints in gold exploration: utilization of mafic dykes in the Canadian Malartic district, Québec, Canada</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>Ore-forming hydrothermal fluids react differently with different country rocks, but few studies have applied this knowledge with the specific goal of expanding the size of hydrothermal footprints in mineral exploration. To develop this concept, 122 metamorphosed mafic dykes from the world-class Canadian Malartic gold district (18.6 Moz Au) were sampled and analyzed for mineralogy, physical properties, and lithogeochemistry (partial and total digestion). The mafic dykes intrude mainly metasedimentary rocks, post-date D
1
deformation, and cross-cut early-D
2
quartz monzodiorite intrusions, but they were deformed and altered during D
2
deformation, mineralization, and metamorphism. They can be subdivided into three groups: Group 1 dykes are least-altered, characterized by amphibole-rich regional metamorphic assemblages and distributed throughout the Pontiac Subprovince. Group 2 and 3 dykes underwent ore-related hydrothermal biotite–calcite–pyrite alteration and are associated with density- and volume-adjusted concentration gains of over 100% in Au–W–Te–C–S–Ag–Cs–Mo–Cu–K–Rb–Se–U–Pb–Ba–F–Bi–Sn. They define a metasomatic footprint up to 6 km away from the deposit toward the SE and up to 2 km away from the deposit toward the SW. Fifty-eight variables that define halos around the Canadian Malartic deposit have been identified and integrated using principal component analysis. PC1 explains 30% of the variance, separates least-mobile elements from ore-related elements, and is interpreted to reflect the ore-forming alteration process. PC2 and PC3 represent igneous processes. PC4 highlights the calcite–pyrite and biotite alteration. Spatial variations of the modal abundances of amphibole, biotite, calcite, and pyrite are the simplest expression of the metasomatic footprint, and they can easily be documented during exploration at the camp scale.</description><subject>Biotite</subject><subject>Calcite</subject><subject>Copper</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluids</subject><subject>Footprints</subject><subject>Geology</subject><subject>Gold</subject><subject>Halos</subject><subject>Lead</subject><subject>Lithogeochemistry</subject><subject>Magma</subject><subject>Metamorphism</subject><subject>Metamorphism (geology)</subject><subject>Mineral exploration</subject><subject>Mineral Resources</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Physical properties</subject><subject>Principal components analysis</subject><subject>Pyrite</subject><subject>Rock</subject><subject>Rock intrusions</subject><subject>Rocks</subject><subject>Selenium</subject><subject>Silver</subject><subject>Spatial distribution</subject><subject>Spatial variations</subject><subject>Tin</subject><subject>Variance analysis</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1Uc1q3DAQFqWBbjd9gN4EvcbJyJa9Vm9lyR8khEJyFmNL2mrrtVxJhs2-TM95jrxY5HWgp15mmJnvB-Yj5CuDcwawuggALK8yYHUGdS6y_QeyYLzIM1ZX1UeyAEhXXor6E_kcwhYABOOwIH8v9wP2yvYbGn9pGuxBU2fobuyizQb0uNNRe5oqBrfDaFtqnIuDt30M1PZ04zpF9X7onE9X13-nY7SdPRyHoxSaRFLPv_URP7mssUdlsaf32KGfNJUN0ds2ntGf4-tLo9uzGYSn5MRgF_SX974kT1eXj-ub7O7h-nb94y5rC1bFTJRqhYw1ChANlJVpdGGEKppV2TLOjWkqXZQV1KIAphpuuGlzqLgRaasbUyzJt1l38O7PqEOUWzf6PlnKHEQhoK45Tyg2o1rvQvDayPSIHfpnyUBOOcg5B5lykFMOcp84-cwJ09M22v9T_j_pDb-hj7M</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Perrouty, Stéphane</creator><creator>Linnen, Robert L.</creator><creator>Lesher, C. Michael</creator><creator>Olivo, Gema R.</creator><creator>Piercey, Stephen J.</creator><creator>Gaillard, Nicolas</creator><creator>Clark, James R.</creator><creator>Enkin, Randolph J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0887-0719</orcidid></search><sort><creationdate>20190601</creationdate><title>Expanding the size of multi-parameter metasomatic footprints in gold exploration: utilization of mafic dykes in the Canadian Malartic district, Québec, Canada</title><author>Perrouty, Stéphane ; Linnen, Robert L. ; Lesher, C. Michael ; Olivo, Gema R. ; Piercey, Stephen J. ; Gaillard, Nicolas ; Clark, James R. ; Enkin, Randolph J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-95d7a11bd0aaf056fbe3f9d3b75c144ffb6e356089301db4f4fc2064f9356ebf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biotite</topic><topic>Calcite</topic><topic>Copper</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluids</topic><topic>Footprints</topic><topic>Geology</topic><topic>Gold</topic><topic>Halos</topic><topic>Lead</topic><topic>Lithogeochemistry</topic><topic>Magma</topic><topic>Metamorphism</topic><topic>Metamorphism (geology)</topic><topic>Mineral exploration</topic><topic>Mineral Resources</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Physical properties</topic><topic>Principal components analysis</topic><topic>Pyrite</topic><topic>Rock</topic><topic>Rock intrusions</topic><topic>Rocks</topic><topic>Selenium</topic><topic>Silver</topic><topic>Spatial distribution</topic><topic>Spatial variations</topic><topic>Tin</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perrouty, Stéphane</creatorcontrib><creatorcontrib>Linnen, Robert L.</creatorcontrib><creatorcontrib>Lesher, C. Michael</creatorcontrib><creatorcontrib>Olivo, Gema R.</creatorcontrib><creatorcontrib>Piercey, Stephen J.</creatorcontrib><creatorcontrib>Gaillard, Nicolas</creatorcontrib><creatorcontrib>Clark, James R.</creatorcontrib><creatorcontrib>Enkin, Randolph J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perrouty, Stéphane</au><au>Linnen, Robert L.</au><au>Lesher, C. Michael</au><au>Olivo, Gema R.</au><au>Piercey, Stephen J.</au><au>Gaillard, Nicolas</au><au>Clark, James R.</au><au>Enkin, Randolph J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expanding the size of multi-parameter metasomatic footprints in gold exploration: utilization of mafic dykes in the Canadian Malartic district, Québec, Canada</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>54</volume><issue>5</issue><spage>761</spage><epage>786</epage><pages>761-786</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>Ore-forming hydrothermal fluids react differently with different country rocks, but few studies have applied this knowledge with the specific goal of expanding the size of hydrothermal footprints in mineral exploration. To develop this concept, 122 metamorphosed mafic dykes from the world-class Canadian Malartic gold district (18.6 Moz Au) were sampled and analyzed for mineralogy, physical properties, and lithogeochemistry (partial and total digestion). The mafic dykes intrude mainly metasedimentary rocks, post-date D
1
deformation, and cross-cut early-D
2
quartz monzodiorite intrusions, but they were deformed and altered during D
2
deformation, mineralization, and metamorphism. They can be subdivided into three groups: Group 1 dykes are least-altered, characterized by amphibole-rich regional metamorphic assemblages and distributed throughout the Pontiac Subprovince. Group 2 and 3 dykes underwent ore-related hydrothermal biotite–calcite–pyrite alteration and are associated with density- and volume-adjusted concentration gains of over 100% in Au–W–Te–C–S–Ag–Cs–Mo–Cu–K–Rb–Se–U–Pb–Ba–F–Bi–Sn. They define a metasomatic footprint up to 6 km away from the deposit toward the SE and up to 2 km away from the deposit toward the SW. Fifty-eight variables that define halos around the Canadian Malartic deposit have been identified and integrated using principal component analysis. PC1 explains 30% of the variance, separates least-mobile elements from ore-related elements, and is interpreted to reflect the ore-forming alteration process. PC2 and PC3 represent igneous processes. PC4 highlights the calcite–pyrite and biotite alteration. Spatial variations of the modal abundances of amphibole, biotite, calcite, and pyrite are the simplest expression of the metasomatic footprint, and they can easily be documented during exploration at the camp scale.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-018-0829-x</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-0887-0719</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-4598 |
ispartof | Mineralium deposita, 2019-06, Vol.54 (5), p.761-786 |
issn | 0026-4598 1432-1866 |
language | eng |
recordid | cdi_proquest_journals_2093908844 |
source | SpringerLink Journals |
subjects | Biotite Calcite Copper Deformation Deformation mechanisms Earth and Environmental Science Earth Sciences Fluids Footprints Geology Gold Halos Lead Lithogeochemistry Magma Metamorphism Metamorphism (geology) Mineral exploration Mineral Resources Mineralization Mineralogy Physical properties Principal components analysis Pyrite Rock Rock intrusions Rocks Selenium Silver Spatial distribution Spatial variations Tin Variance analysis |
title | Expanding the size of multi-parameter metasomatic footprints in gold exploration: utilization of mafic dykes in the Canadian Malartic district, Québec, Canada |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expanding%20the%20size%20of%20multi-parameter%20metasomatic%20footprints%20in%20gold%20exploration:%20utilization%20of%20mafic%20dykes%20in%20the%20Canadian%20Malartic%20district,%20Qu%C3%A9bec,%20Canada&rft.jtitle=Mineralium%20deposita&rft.au=Perrouty,%20St%C3%A9phane&rft.date=2019-06-01&rft.volume=54&rft.issue=5&rft.spage=761&rft.epage=786&rft.pages=761-786&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-018-0829-x&rft_dat=%3Cproquest_cross%3E2093908844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2093908844&rft_id=info:pmid/&rfr_iscdi=true |