Expanding the size of multi-parameter metasomatic footprints in gold exploration: utilization of mafic dykes in the Canadian Malartic district, Québec, Canada

Ore-forming hydrothermal fluids react differently with different country rocks, but few studies have applied this knowledge with the specific goal of expanding the size of hydrothermal footprints in mineral exploration. To develop this concept, 122 metamorphosed mafic dykes from the world-class Cana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mineralium deposita 2019-06, Vol.54 (5), p.761-786
Hauptverfasser: Perrouty, Stéphane, Linnen, Robert L., Lesher, C. Michael, Olivo, Gema R., Piercey, Stephen J., Gaillard, Nicolas, Clark, James R., Enkin, Randolph J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 786
container_issue 5
container_start_page 761
container_title Mineralium deposita
container_volume 54
creator Perrouty, Stéphane
Linnen, Robert L.
Lesher, C. Michael
Olivo, Gema R.
Piercey, Stephen J.
Gaillard, Nicolas
Clark, James R.
Enkin, Randolph J.
description Ore-forming hydrothermal fluids react differently with different country rocks, but few studies have applied this knowledge with the specific goal of expanding the size of hydrothermal footprints in mineral exploration. To develop this concept, 122 metamorphosed mafic dykes from the world-class Canadian Malartic gold district (18.6 Moz Au) were sampled and analyzed for mineralogy, physical properties, and lithogeochemistry (partial and total digestion). The mafic dykes intrude mainly metasedimentary rocks, post-date D 1 deformation, and cross-cut early-D 2 quartz monzodiorite intrusions, but they were deformed and altered during D 2 deformation, mineralization, and metamorphism. They can be subdivided into three groups: Group 1 dykes are least-altered, characterized by amphibole-rich regional metamorphic assemblages and distributed throughout the Pontiac Subprovince. Group 2 and 3 dykes underwent ore-related hydrothermal biotite–calcite–pyrite alteration and are associated with density- and volume-adjusted concentration gains of over 100% in Au–W–Te–C–S–Ag–Cs–Mo–Cu–K–Rb–Se–U–Pb–Ba–F–Bi–Sn. They define a metasomatic footprint up to 6 km away from the deposit toward the SE and up to 2 km away from the deposit toward the SW. Fifty-eight variables that define halos around the Canadian Malartic deposit have been identified and integrated using principal component analysis. PC1 explains 30% of the variance, separates least-mobile elements from ore-related elements, and is interpreted to reflect the ore-forming alteration process. PC2 and PC3 represent igneous processes. PC4 highlights the calcite–pyrite and biotite alteration. Spatial variations of the modal abundances of amphibole, biotite, calcite, and pyrite are the simplest expression of the metasomatic footprint, and they can easily be documented during exploration at the camp scale.
doi_str_mv 10.1007/s00126-018-0829-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2093908844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093908844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-95d7a11bd0aaf056fbe3f9d3b75c144ffb6e356089301db4f4fc2064f9356ebf3</originalsourceid><addsrcrecordid>eNp1Uc1q3DAQFqWBbjd9gN4EvcbJyJa9Vm9lyR8khEJyFmNL2mrrtVxJhs2-TM95jrxY5HWgp15mmJnvB-Yj5CuDcwawuggALK8yYHUGdS6y_QeyYLzIM1ZX1UeyAEhXXor6E_kcwhYABOOwIH8v9wP2yvYbGn9pGuxBU2fobuyizQb0uNNRe5oqBrfDaFtqnIuDt30M1PZ04zpF9X7onE9X13-nY7SdPRyHoxSaRFLPv_URP7mssUdlsaf32KGfNJUN0ds2ntGf4-tLo9uzGYSn5MRgF_SX974kT1eXj-ub7O7h-nb94y5rC1bFTJRqhYw1ChANlJVpdGGEKppV2TLOjWkqXZQV1KIAphpuuGlzqLgRaasbUyzJt1l38O7PqEOUWzf6PlnKHEQhoK45Tyg2o1rvQvDayPSIHfpnyUBOOcg5B5lykFMOcp84-cwJ09M22v9T_j_pDb-hj7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093908844</pqid></control><display><type>article</type><title>Expanding the size of multi-parameter metasomatic footprints in gold exploration: utilization of mafic dykes in the Canadian Malartic district, Québec, Canada</title><source>SpringerLink Journals</source><creator>Perrouty, Stéphane ; Linnen, Robert L. ; Lesher, C. Michael ; Olivo, Gema R. ; Piercey, Stephen J. ; Gaillard, Nicolas ; Clark, James R. ; Enkin, Randolph J.</creator><creatorcontrib>Perrouty, Stéphane ; Linnen, Robert L. ; Lesher, C. Michael ; Olivo, Gema R. ; Piercey, Stephen J. ; Gaillard, Nicolas ; Clark, James R. ; Enkin, Randolph J.</creatorcontrib><description>Ore-forming hydrothermal fluids react differently with different country rocks, but few studies have applied this knowledge with the specific goal of expanding the size of hydrothermal footprints in mineral exploration. To develop this concept, 122 metamorphosed mafic dykes from the world-class Canadian Malartic gold district (18.6 Moz Au) were sampled and analyzed for mineralogy, physical properties, and lithogeochemistry (partial and total digestion). The mafic dykes intrude mainly metasedimentary rocks, post-date D 1 deformation, and cross-cut early-D 2 quartz monzodiorite intrusions, but they were deformed and altered during D 2 deformation, mineralization, and metamorphism. They can be subdivided into three groups: Group 1 dykes are least-altered, characterized by amphibole-rich regional metamorphic assemblages and distributed throughout the Pontiac Subprovince. Group 2 and 3 dykes underwent ore-related hydrothermal biotite–calcite–pyrite alteration and are associated with density- and volume-adjusted concentration gains of over 100% in Au–W–Te–C–S–Ag–Cs–Mo–Cu–K–Rb–Se–U–Pb–Ba–F–Bi–Sn. They define a metasomatic footprint up to 6 km away from the deposit toward the SE and up to 2 km away from the deposit toward the SW. Fifty-eight variables that define halos around the Canadian Malartic deposit have been identified and integrated using principal component analysis. PC1 explains 30% of the variance, separates least-mobile elements from ore-related elements, and is interpreted to reflect the ore-forming alteration process. PC2 and PC3 represent igneous processes. PC4 highlights the calcite–pyrite and biotite alteration. Spatial variations of the modal abundances of amphibole, biotite, calcite, and pyrite are the simplest expression of the metasomatic footprint, and they can easily be documented during exploration at the camp scale.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-018-0829-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biotite ; Calcite ; Copper ; Deformation ; Deformation mechanisms ; Earth and Environmental Science ; Earth Sciences ; Fluids ; Footprints ; Geology ; Gold ; Halos ; Lead ; Lithogeochemistry ; Magma ; Metamorphism ; Metamorphism (geology) ; Mineral exploration ; Mineral Resources ; Mineralization ; Mineralogy ; Physical properties ; Principal components analysis ; Pyrite ; Rock ; Rock intrusions ; Rocks ; Selenium ; Silver ; Spatial distribution ; Spatial variations ; Tin ; Variance analysis</subject><ispartof>Mineralium deposita, 2019-06, Vol.54 (5), p.761-786</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018. corrected publication 2018</rights><rights>Mineralium Deposita is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-95d7a11bd0aaf056fbe3f9d3b75c144ffb6e356089301db4f4fc2064f9356ebf3</citedby><cites>FETCH-LOGICAL-c316t-95d7a11bd0aaf056fbe3f9d3b75c144ffb6e356089301db4f4fc2064f9356ebf3</cites><orcidid>0000-0002-0887-0719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00126-018-0829-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00126-018-0829-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Perrouty, Stéphane</creatorcontrib><creatorcontrib>Linnen, Robert L.</creatorcontrib><creatorcontrib>Lesher, C. Michael</creatorcontrib><creatorcontrib>Olivo, Gema R.</creatorcontrib><creatorcontrib>Piercey, Stephen J.</creatorcontrib><creatorcontrib>Gaillard, Nicolas</creatorcontrib><creatorcontrib>Clark, James R.</creatorcontrib><creatorcontrib>Enkin, Randolph J.</creatorcontrib><title>Expanding the size of multi-parameter metasomatic footprints in gold exploration: utilization of mafic dykes in the Canadian Malartic district, Québec, Canada</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>Ore-forming hydrothermal fluids react differently with different country rocks, but few studies have applied this knowledge with the specific goal of expanding the size of hydrothermal footprints in mineral exploration. To develop this concept, 122 metamorphosed mafic dykes from the world-class Canadian Malartic gold district (18.6 Moz Au) were sampled and analyzed for mineralogy, physical properties, and lithogeochemistry (partial and total digestion). The mafic dykes intrude mainly metasedimentary rocks, post-date D 1 deformation, and cross-cut early-D 2 quartz monzodiorite intrusions, but they were deformed and altered during D 2 deformation, mineralization, and metamorphism. They can be subdivided into three groups: Group 1 dykes are least-altered, characterized by amphibole-rich regional metamorphic assemblages and distributed throughout the Pontiac Subprovince. Group 2 and 3 dykes underwent ore-related hydrothermal biotite–calcite–pyrite alteration and are associated with density- and volume-adjusted concentration gains of over 100% in Au–W–Te–C–S–Ag–Cs–Mo–Cu–K–Rb–Se–U–Pb–Ba–F–Bi–Sn. They define a metasomatic footprint up to 6 km away from the deposit toward the SE and up to 2 km away from the deposit toward the SW. Fifty-eight variables that define halos around the Canadian Malartic deposit have been identified and integrated using principal component analysis. PC1 explains 30% of the variance, separates least-mobile elements from ore-related elements, and is interpreted to reflect the ore-forming alteration process. PC2 and PC3 represent igneous processes. PC4 highlights the calcite–pyrite and biotite alteration. Spatial variations of the modal abundances of amphibole, biotite, calcite, and pyrite are the simplest expression of the metasomatic footprint, and they can easily be documented during exploration at the camp scale.</description><subject>Biotite</subject><subject>Calcite</subject><subject>Copper</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluids</subject><subject>Footprints</subject><subject>Geology</subject><subject>Gold</subject><subject>Halos</subject><subject>Lead</subject><subject>Lithogeochemistry</subject><subject>Magma</subject><subject>Metamorphism</subject><subject>Metamorphism (geology)</subject><subject>Mineral exploration</subject><subject>Mineral Resources</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Physical properties</subject><subject>Principal components analysis</subject><subject>Pyrite</subject><subject>Rock</subject><subject>Rock intrusions</subject><subject>Rocks</subject><subject>Selenium</subject><subject>Silver</subject><subject>Spatial distribution</subject><subject>Spatial variations</subject><subject>Tin</subject><subject>Variance analysis</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1Uc1q3DAQFqWBbjd9gN4EvcbJyJa9Vm9lyR8khEJyFmNL2mrrtVxJhs2-TM95jrxY5HWgp15mmJnvB-Yj5CuDcwawuggALK8yYHUGdS6y_QeyYLzIM1ZX1UeyAEhXXor6E_kcwhYABOOwIH8v9wP2yvYbGn9pGuxBU2fobuyizQb0uNNRe5oqBrfDaFtqnIuDt30M1PZ04zpF9X7onE9X13-nY7SdPRyHoxSaRFLPv_URP7mssUdlsaf32KGfNJUN0ds2ntGf4-tLo9uzGYSn5MRgF_SX974kT1eXj-ub7O7h-nb94y5rC1bFTJRqhYw1ChANlJVpdGGEKppV2TLOjWkqXZQV1KIAphpuuGlzqLgRaasbUyzJt1l38O7PqEOUWzf6PlnKHEQhoK45Tyg2o1rvQvDayPSIHfpnyUBOOcg5B5lykFMOcp84-cwJ09M22v9T_j_pDb-hj7M</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Perrouty, Stéphane</creator><creator>Linnen, Robert L.</creator><creator>Lesher, C. Michael</creator><creator>Olivo, Gema R.</creator><creator>Piercey, Stephen J.</creator><creator>Gaillard, Nicolas</creator><creator>Clark, James R.</creator><creator>Enkin, Randolph J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0887-0719</orcidid></search><sort><creationdate>20190601</creationdate><title>Expanding the size of multi-parameter metasomatic footprints in gold exploration: utilization of mafic dykes in the Canadian Malartic district, Québec, Canada</title><author>Perrouty, Stéphane ; Linnen, Robert L. ; Lesher, C. Michael ; Olivo, Gema R. ; Piercey, Stephen J. ; Gaillard, Nicolas ; Clark, James R. ; Enkin, Randolph J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-95d7a11bd0aaf056fbe3f9d3b75c144ffb6e356089301db4f4fc2064f9356ebf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biotite</topic><topic>Calcite</topic><topic>Copper</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluids</topic><topic>Footprints</topic><topic>Geology</topic><topic>Gold</topic><topic>Halos</topic><topic>Lead</topic><topic>Lithogeochemistry</topic><topic>Magma</topic><topic>Metamorphism</topic><topic>Metamorphism (geology)</topic><topic>Mineral exploration</topic><topic>Mineral Resources</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Physical properties</topic><topic>Principal components analysis</topic><topic>Pyrite</topic><topic>Rock</topic><topic>Rock intrusions</topic><topic>Rocks</topic><topic>Selenium</topic><topic>Silver</topic><topic>Spatial distribution</topic><topic>Spatial variations</topic><topic>Tin</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perrouty, Stéphane</creatorcontrib><creatorcontrib>Linnen, Robert L.</creatorcontrib><creatorcontrib>Lesher, C. Michael</creatorcontrib><creatorcontrib>Olivo, Gema R.</creatorcontrib><creatorcontrib>Piercey, Stephen J.</creatorcontrib><creatorcontrib>Gaillard, Nicolas</creatorcontrib><creatorcontrib>Clark, James R.</creatorcontrib><creatorcontrib>Enkin, Randolph J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perrouty, Stéphane</au><au>Linnen, Robert L.</au><au>Lesher, C. Michael</au><au>Olivo, Gema R.</au><au>Piercey, Stephen J.</au><au>Gaillard, Nicolas</au><au>Clark, James R.</au><au>Enkin, Randolph J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expanding the size of multi-parameter metasomatic footprints in gold exploration: utilization of mafic dykes in the Canadian Malartic district, Québec, Canada</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>54</volume><issue>5</issue><spage>761</spage><epage>786</epage><pages>761-786</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>Ore-forming hydrothermal fluids react differently with different country rocks, but few studies have applied this knowledge with the specific goal of expanding the size of hydrothermal footprints in mineral exploration. To develop this concept, 122 metamorphosed mafic dykes from the world-class Canadian Malartic gold district (18.6 Moz Au) were sampled and analyzed for mineralogy, physical properties, and lithogeochemistry (partial and total digestion). The mafic dykes intrude mainly metasedimentary rocks, post-date D 1 deformation, and cross-cut early-D 2 quartz monzodiorite intrusions, but they were deformed and altered during D 2 deformation, mineralization, and metamorphism. They can be subdivided into three groups: Group 1 dykes are least-altered, characterized by amphibole-rich regional metamorphic assemblages and distributed throughout the Pontiac Subprovince. Group 2 and 3 dykes underwent ore-related hydrothermal biotite–calcite–pyrite alteration and are associated with density- and volume-adjusted concentration gains of over 100% in Au–W–Te–C–S–Ag–Cs–Mo–Cu–K–Rb–Se–U–Pb–Ba–F–Bi–Sn. They define a metasomatic footprint up to 6 km away from the deposit toward the SE and up to 2 km away from the deposit toward the SW. Fifty-eight variables that define halos around the Canadian Malartic deposit have been identified and integrated using principal component analysis. PC1 explains 30% of the variance, separates least-mobile elements from ore-related elements, and is interpreted to reflect the ore-forming alteration process. PC2 and PC3 represent igneous processes. PC4 highlights the calcite–pyrite and biotite alteration. Spatial variations of the modal abundances of amphibole, biotite, calcite, and pyrite are the simplest expression of the metasomatic footprint, and they can easily be documented during exploration at the camp scale.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-018-0829-x</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-0887-0719</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0026-4598
ispartof Mineralium deposita, 2019-06, Vol.54 (5), p.761-786
issn 0026-4598
1432-1866
language eng
recordid cdi_proquest_journals_2093908844
source SpringerLink Journals
subjects Biotite
Calcite
Copper
Deformation
Deformation mechanisms
Earth and Environmental Science
Earth Sciences
Fluids
Footprints
Geology
Gold
Halos
Lead
Lithogeochemistry
Magma
Metamorphism
Metamorphism (geology)
Mineral exploration
Mineral Resources
Mineralization
Mineralogy
Physical properties
Principal components analysis
Pyrite
Rock
Rock intrusions
Rocks
Selenium
Silver
Spatial distribution
Spatial variations
Tin
Variance analysis
title Expanding the size of multi-parameter metasomatic footprints in gold exploration: utilization of mafic dykes in the Canadian Malartic district, Québec, Canada
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expanding%20the%20size%20of%20multi-parameter%20metasomatic%20footprints%20in%20gold%20exploration:%20utilization%20of%20mafic%20dykes%20in%20the%20Canadian%20Malartic%20district,%20Qu%C3%A9bec,%20Canada&rft.jtitle=Mineralium%20deposita&rft.au=Perrouty,%20St%C3%A9phane&rft.date=2019-06-01&rft.volume=54&rft.issue=5&rft.spage=761&rft.epage=786&rft.pages=761-786&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-018-0829-x&rft_dat=%3Cproquest_cross%3E2093908844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2093908844&rft_id=info:pmid/&rfr_iscdi=true