Highly thermostable joint of Cu/Ni plating/composite Sn–0.7Cu solder with added Cu balls for die attachment in power modules

Improving the reliability of solder joints for die attachment in power modules is one of the most important issues in creating environmentally friendly vehicles such as hybrid electric vehicles. Power modules must have highly reliable solder joints that must be thermostable at temperatures over 175 ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2018-11, Vol.29 (21), p.18290-18301
Hauptverfasser: Kadoguchi, Takuya, Take, Naoya, Yamanaka, Kimihiro, Nagao, Shijo, Suganuma, Katsuaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18301
container_issue 21
container_start_page 18290
container_title Journal of materials science. Materials in electronics
container_volume 29
creator Kadoguchi, Takuya
Take, Naoya
Yamanaka, Kimihiro
Nagao, Shijo
Suganuma, Katsuaki
description Improving the reliability of solder joints for die attachment in power modules is one of the most important issues in creating environmentally friendly vehicles such as hybrid electric vehicles. Power modules must have highly reliable solder joints that must be thermostable at temperatures over 175 °C in the future. In die attachment, soldering surfaces are often finished with Ni plating, so for Cu/Ni plating/Sn–Cu solder joints it is necessary to suppress both Ni diffusion into the solder as well as growth of the (Ni,Cu) 3 Sn 4 intermetallic compound (IMC). Ni diffusion in Ni plating can be suppressed by the presence of a continuous (Cu,Ni) 6 Sn 5 IMC layer at the Ni plating/solder interface. To form this IMC, we investigated the interfacial reactions and growth behavior of IMC layers in the presence of composite Sn–0.7Cu solder with added Cu balls. Adding 2.5 mass% of Cu balls prompted the formation of a continuous (Cu,Ni) 6 Sn 5 IMC layer at both the electroless Ni–P and the electrolytic Ni plating, and this IMC layer worked well as a Ni diffusion barrier during a high-temperature storage test at 200 °C for 1000 h.
doi_str_mv 10.1007/s10854-018-9943-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2093908368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093908368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-dfb171db6d151119179d47d7bcd13199c2dbc6efa3aaf790b3ac579024ebb3f43</originalsourceid><addsrcrecordid>eNp1kM1KxDAURoMoOP48gLuA6zq5Tds0Sxn8A9GFCu5C0qQzGdqmJik6G_EdfEOfxMgIrlzdzTnfhYPQCZAzIITNA5C6LDICdcZ5QbO3HTSDktGsqPPnXTQjvGRZUeb5PjoIYU0IqQpaz9D7tV2uug2OK-N7F6JUncFrZ4eIXYsX0_zO4rGT0Q7LeeP60QUbDX4Yvj4-yRlbTDi4ThuPX21cYam10UnCSnZdwK3zWFuDZYyyWfUmbdoBj-418b3TU2fCEdprZRfM8e89RE-XF4-L6-z2_upmcX6bNRSqmOlWAQOtKg0lAHBgXBdMM9VooMB5k2vVVKaVVMqWcaKobMp088IoRduCHqLT7e7o3ctkQhRrN_khvRQ54ZSTmlZ1omBLNd6F4E0rRm976TcCiPjJLLaZRcosfjKLt-TkWyckdlga_7f8v_QNorqDDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093908368</pqid></control><display><type>article</type><title>Highly thermostable joint of Cu/Ni plating/composite Sn–0.7Cu solder with added Cu balls for die attachment in power modules</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kadoguchi, Takuya ; Take, Naoya ; Yamanaka, Kimihiro ; Nagao, Shijo ; Suganuma, Katsuaki</creator><creatorcontrib>Kadoguchi, Takuya ; Take, Naoya ; Yamanaka, Kimihiro ; Nagao, Shijo ; Suganuma, Katsuaki</creatorcontrib><description>Improving the reliability of solder joints for die attachment in power modules is one of the most important issues in creating environmentally friendly vehicles such as hybrid electric vehicles. Power modules must have highly reliable solder joints that must be thermostable at temperatures over 175 °C in the future. In die attachment, soldering surfaces are often finished with Ni plating, so for Cu/Ni plating/Sn–Cu solder joints it is necessary to suppress both Ni diffusion into the solder as well as growth of the (Ni,Cu) 3 Sn 4 intermetallic compound (IMC). Ni diffusion in Ni plating can be suppressed by the presence of a continuous (Cu,Ni) 6 Sn 5 IMC layer at the Ni plating/solder interface. To form this IMC, we investigated the interfacial reactions and growth behavior of IMC layers in the presence of composite Sn–0.7Cu solder with added Cu balls. Adding 2.5 mass% of Cu balls prompted the formation of a continuous (Cu,Ni) 6 Sn 5 IMC layer at both the electroless Ni–P and the electrolytic Ni plating, and this IMC layer worked well as a Ni diffusion barrier during a high-temperature storage test at 200 °C for 1000 h.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-018-9943-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Attachment ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Diffusion barriers ; Diffusion layers ; Diffusion plating ; Electric vehicles ; Electroless plating ; Hybrid electric vehicles ; Interface reactions ; Intermetallic compounds ; Materials Science ; Modules ; Nickel compounds ; Nickel plating ; Optical and Electronic Materials ; Soldered joints ; Soldering ; Tin</subject><ispartof>Journal of materials science. Materials in electronics, 2018-11, Vol.29 (21), p.18290-18301</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-dfb171db6d151119179d47d7bcd13199c2dbc6efa3aaf790b3ac579024ebb3f43</citedby><cites>FETCH-LOGICAL-c316t-dfb171db6d151119179d47d7bcd13199c2dbc6efa3aaf790b3ac579024ebb3f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-018-9943-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-018-9943-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kadoguchi, Takuya</creatorcontrib><creatorcontrib>Take, Naoya</creatorcontrib><creatorcontrib>Yamanaka, Kimihiro</creatorcontrib><creatorcontrib>Nagao, Shijo</creatorcontrib><creatorcontrib>Suganuma, Katsuaki</creatorcontrib><title>Highly thermostable joint of Cu/Ni plating/composite Sn–0.7Cu solder with added Cu balls for die attachment in power modules</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Improving the reliability of solder joints for die attachment in power modules is one of the most important issues in creating environmentally friendly vehicles such as hybrid electric vehicles. Power modules must have highly reliable solder joints that must be thermostable at temperatures over 175 °C in the future. In die attachment, soldering surfaces are often finished with Ni plating, so for Cu/Ni plating/Sn–Cu solder joints it is necessary to suppress both Ni diffusion into the solder as well as growth of the (Ni,Cu) 3 Sn 4 intermetallic compound (IMC). Ni diffusion in Ni plating can be suppressed by the presence of a continuous (Cu,Ni) 6 Sn 5 IMC layer at the Ni plating/solder interface. To form this IMC, we investigated the interfacial reactions and growth behavior of IMC layers in the presence of composite Sn–0.7Cu solder with added Cu balls. Adding 2.5 mass% of Cu balls prompted the formation of a continuous (Cu,Ni) 6 Sn 5 IMC layer at both the electroless Ni–P and the electrolytic Ni plating, and this IMC layer worked well as a Ni diffusion barrier during a high-temperature storage test at 200 °C for 1000 h.</description><subject>Attachment</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Diffusion barriers</subject><subject>Diffusion layers</subject><subject>Diffusion plating</subject><subject>Electric vehicles</subject><subject>Electroless plating</subject><subject>Hybrid electric vehicles</subject><subject>Interface reactions</subject><subject>Intermetallic compounds</subject><subject>Materials Science</subject><subject>Modules</subject><subject>Nickel compounds</subject><subject>Nickel plating</subject><subject>Optical and Electronic Materials</subject><subject>Soldered joints</subject><subject>Soldering</subject><subject>Tin</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1KxDAURoMoOP48gLuA6zq5Tds0Sxn8A9GFCu5C0qQzGdqmJik6G_EdfEOfxMgIrlzdzTnfhYPQCZAzIITNA5C6LDICdcZ5QbO3HTSDktGsqPPnXTQjvGRZUeb5PjoIYU0IqQpaz9D7tV2uug2OK-N7F6JUncFrZ4eIXYsX0_zO4rGT0Q7LeeP60QUbDX4Yvj4-yRlbTDi4ThuPX21cYam10UnCSnZdwK3zWFuDZYyyWfUmbdoBj-418b3TU2fCEdprZRfM8e89RE-XF4-L6-z2_upmcX6bNRSqmOlWAQOtKg0lAHBgXBdMM9VooMB5k2vVVKaVVMqWcaKobMp088IoRduCHqLT7e7o3ctkQhRrN_khvRQ54ZSTmlZ1omBLNd6F4E0rRm976TcCiPjJLLaZRcosfjKLt-TkWyckdlga_7f8v_QNorqDDQ</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Kadoguchi, Takuya</creator><creator>Take, Naoya</creator><creator>Yamanaka, Kimihiro</creator><creator>Nagao, Shijo</creator><creator>Suganuma, Katsuaki</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20181101</creationdate><title>Highly thermostable joint of Cu/Ni plating/composite Sn–0.7Cu solder with added Cu balls for die attachment in power modules</title><author>Kadoguchi, Takuya ; Take, Naoya ; Yamanaka, Kimihiro ; Nagao, Shijo ; Suganuma, Katsuaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-dfb171db6d151119179d47d7bcd13199c2dbc6efa3aaf790b3ac579024ebb3f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Attachment</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Diffusion barriers</topic><topic>Diffusion layers</topic><topic>Diffusion plating</topic><topic>Electric vehicles</topic><topic>Electroless plating</topic><topic>Hybrid electric vehicles</topic><topic>Interface reactions</topic><topic>Intermetallic compounds</topic><topic>Materials Science</topic><topic>Modules</topic><topic>Nickel compounds</topic><topic>Nickel plating</topic><topic>Optical and Electronic Materials</topic><topic>Soldered joints</topic><topic>Soldering</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadoguchi, Takuya</creatorcontrib><creatorcontrib>Take, Naoya</creatorcontrib><creatorcontrib>Yamanaka, Kimihiro</creatorcontrib><creatorcontrib>Nagao, Shijo</creatorcontrib><creatorcontrib>Suganuma, Katsuaki</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadoguchi, Takuya</au><au>Take, Naoya</au><au>Yamanaka, Kimihiro</au><au>Nagao, Shijo</au><au>Suganuma, Katsuaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly thermostable joint of Cu/Ni plating/composite Sn–0.7Cu solder with added Cu balls for die attachment in power modules</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>29</volume><issue>21</issue><spage>18290</spage><epage>18301</epage><pages>18290-18301</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Improving the reliability of solder joints for die attachment in power modules is one of the most important issues in creating environmentally friendly vehicles such as hybrid electric vehicles. Power modules must have highly reliable solder joints that must be thermostable at temperatures over 175 °C in the future. In die attachment, soldering surfaces are often finished with Ni plating, so for Cu/Ni plating/Sn–Cu solder joints it is necessary to suppress both Ni diffusion into the solder as well as growth of the (Ni,Cu) 3 Sn 4 intermetallic compound (IMC). Ni diffusion in Ni plating can be suppressed by the presence of a continuous (Cu,Ni) 6 Sn 5 IMC layer at the Ni plating/solder interface. To form this IMC, we investigated the interfacial reactions and growth behavior of IMC layers in the presence of composite Sn–0.7Cu solder with added Cu balls. Adding 2.5 mass% of Cu balls prompted the formation of a continuous (Cu,Ni) 6 Sn 5 IMC layer at both the electroless Ni–P and the electrolytic Ni plating, and this IMC layer worked well as a Ni diffusion barrier during a high-temperature storage test at 200 °C for 1000 h.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-018-9943-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2018-11, Vol.29 (21), p.18290-18301
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2093908368
source SpringerLink Journals - AutoHoldings
subjects Attachment
Characterization and Evaluation of Materials
Chemistry and Materials Science
Copper
Diffusion barriers
Diffusion layers
Diffusion plating
Electric vehicles
Electroless plating
Hybrid electric vehicles
Interface reactions
Intermetallic compounds
Materials Science
Modules
Nickel compounds
Nickel plating
Optical and Electronic Materials
Soldered joints
Soldering
Tin
title Highly thermostable joint of Cu/Ni plating/composite Sn–0.7Cu solder with added Cu balls for die attachment in power modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20thermostable%20joint%20of%20Cu/Ni%20plating/composite%20Sn%E2%80%930.7Cu%20solder%20with%20added%20Cu%20balls%20for%20die%20attachment%20in%20power%20modules&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Kadoguchi,%20Takuya&rft.date=2018-11-01&rft.volume=29&rft.issue=21&rft.spage=18290&rft.epage=18301&rft.pages=18290-18301&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-018-9943-x&rft_dat=%3Cproquest_cross%3E2093908368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2093908368&rft_id=info:pmid/&rfr_iscdi=true