Highly thermostable joint of Cu/Ni plating/composite Sn–0.7Cu solder with added Cu balls for die attachment in power modules
Improving the reliability of solder joints for die attachment in power modules is one of the most important issues in creating environmentally friendly vehicles such as hybrid electric vehicles. Power modules must have highly reliable solder joints that must be thermostable at temperatures over 175 ...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2018-11, Vol.29 (21), p.18290-18301 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18301 |
---|---|
container_issue | 21 |
container_start_page | 18290 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 29 |
creator | Kadoguchi, Takuya Take, Naoya Yamanaka, Kimihiro Nagao, Shijo Suganuma, Katsuaki |
description | Improving the reliability of solder joints for die attachment in power modules is one of the most important issues in creating environmentally friendly vehicles such as hybrid electric vehicles. Power modules must have highly reliable solder joints that must be thermostable at temperatures over 175 °C in the future. In die attachment, soldering surfaces are often finished with Ni plating, so for Cu/Ni plating/Sn–Cu solder joints it is necessary to suppress both Ni diffusion into the solder as well as growth of the (Ni,Cu)
3
Sn
4
intermetallic compound (IMC). Ni diffusion in Ni plating can be suppressed by the presence of a continuous (Cu,Ni)
6
Sn
5
IMC layer at the Ni plating/solder interface. To form this IMC, we investigated the interfacial reactions and growth behavior of IMC layers in the presence of composite Sn–0.7Cu solder with added Cu balls. Adding 2.5 mass% of Cu balls prompted the formation of a continuous (Cu,Ni)
6
Sn
5
IMC layer at both the electroless Ni–P and the electrolytic Ni plating, and this IMC layer worked well as a Ni diffusion barrier during a high-temperature storage test at 200 °C for 1000 h. |
doi_str_mv | 10.1007/s10854-018-9943-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2093908368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093908368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-dfb171db6d151119179d47d7bcd13199c2dbc6efa3aaf790b3ac579024ebb3f43</originalsourceid><addsrcrecordid>eNp1kM1KxDAURoMoOP48gLuA6zq5Tds0Sxn8A9GFCu5C0qQzGdqmJik6G_EdfEOfxMgIrlzdzTnfhYPQCZAzIITNA5C6LDICdcZ5QbO3HTSDktGsqPPnXTQjvGRZUeb5PjoIYU0IqQpaz9D7tV2uug2OK-N7F6JUncFrZ4eIXYsX0_zO4rGT0Q7LeeP60QUbDX4Yvj4-yRlbTDi4ThuPX21cYam10UnCSnZdwK3zWFuDZYyyWfUmbdoBj-418b3TU2fCEdprZRfM8e89RE-XF4-L6-z2_upmcX6bNRSqmOlWAQOtKg0lAHBgXBdMM9VooMB5k2vVVKaVVMqWcaKobMp088IoRduCHqLT7e7o3ctkQhRrN_khvRQ54ZSTmlZ1omBLNd6F4E0rRm976TcCiPjJLLaZRcosfjKLt-TkWyckdlga_7f8v_QNorqDDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093908368</pqid></control><display><type>article</type><title>Highly thermostable joint of Cu/Ni plating/composite Sn–0.7Cu solder with added Cu balls for die attachment in power modules</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kadoguchi, Takuya ; Take, Naoya ; Yamanaka, Kimihiro ; Nagao, Shijo ; Suganuma, Katsuaki</creator><creatorcontrib>Kadoguchi, Takuya ; Take, Naoya ; Yamanaka, Kimihiro ; Nagao, Shijo ; Suganuma, Katsuaki</creatorcontrib><description>Improving the reliability of solder joints for die attachment in power modules is one of the most important issues in creating environmentally friendly vehicles such as hybrid electric vehicles. Power modules must have highly reliable solder joints that must be thermostable at temperatures over 175 °C in the future. In die attachment, soldering surfaces are often finished with Ni plating, so for Cu/Ni plating/Sn–Cu solder joints it is necessary to suppress both Ni diffusion into the solder as well as growth of the (Ni,Cu)
3
Sn
4
intermetallic compound (IMC). Ni diffusion in Ni plating can be suppressed by the presence of a continuous (Cu,Ni)
6
Sn
5
IMC layer at the Ni plating/solder interface. To form this IMC, we investigated the interfacial reactions and growth behavior of IMC layers in the presence of composite Sn–0.7Cu solder with added Cu balls. Adding 2.5 mass% of Cu balls prompted the formation of a continuous (Cu,Ni)
6
Sn
5
IMC layer at both the electroless Ni–P and the electrolytic Ni plating, and this IMC layer worked well as a Ni diffusion barrier during a high-temperature storage test at 200 °C for 1000 h.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-018-9943-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Attachment ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Diffusion barriers ; Diffusion layers ; Diffusion plating ; Electric vehicles ; Electroless plating ; Hybrid electric vehicles ; Interface reactions ; Intermetallic compounds ; Materials Science ; Modules ; Nickel compounds ; Nickel plating ; Optical and Electronic Materials ; Soldered joints ; Soldering ; Tin</subject><ispartof>Journal of materials science. Materials in electronics, 2018-11, Vol.29 (21), p.18290-18301</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-dfb171db6d151119179d47d7bcd13199c2dbc6efa3aaf790b3ac579024ebb3f43</citedby><cites>FETCH-LOGICAL-c316t-dfb171db6d151119179d47d7bcd13199c2dbc6efa3aaf790b3ac579024ebb3f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-018-9943-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-018-9943-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kadoguchi, Takuya</creatorcontrib><creatorcontrib>Take, Naoya</creatorcontrib><creatorcontrib>Yamanaka, Kimihiro</creatorcontrib><creatorcontrib>Nagao, Shijo</creatorcontrib><creatorcontrib>Suganuma, Katsuaki</creatorcontrib><title>Highly thermostable joint of Cu/Ni plating/composite Sn–0.7Cu solder with added Cu balls for die attachment in power modules</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Improving the reliability of solder joints for die attachment in power modules is one of the most important issues in creating environmentally friendly vehicles such as hybrid electric vehicles. Power modules must have highly reliable solder joints that must be thermostable at temperatures over 175 °C in the future. In die attachment, soldering surfaces are often finished with Ni plating, so for Cu/Ni plating/Sn–Cu solder joints it is necessary to suppress both Ni diffusion into the solder as well as growth of the (Ni,Cu)
3
Sn
4
intermetallic compound (IMC). Ni diffusion in Ni plating can be suppressed by the presence of a continuous (Cu,Ni)
6
Sn
5
IMC layer at the Ni plating/solder interface. To form this IMC, we investigated the interfacial reactions and growth behavior of IMC layers in the presence of composite Sn–0.7Cu solder with added Cu balls. Adding 2.5 mass% of Cu balls prompted the formation of a continuous (Cu,Ni)
6
Sn
5
IMC layer at both the electroless Ni–P and the electrolytic Ni plating, and this IMC layer worked well as a Ni diffusion barrier during a high-temperature storage test at 200 °C for 1000 h.</description><subject>Attachment</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Diffusion barriers</subject><subject>Diffusion layers</subject><subject>Diffusion plating</subject><subject>Electric vehicles</subject><subject>Electroless plating</subject><subject>Hybrid electric vehicles</subject><subject>Interface reactions</subject><subject>Intermetallic compounds</subject><subject>Materials Science</subject><subject>Modules</subject><subject>Nickel compounds</subject><subject>Nickel plating</subject><subject>Optical and Electronic Materials</subject><subject>Soldered joints</subject><subject>Soldering</subject><subject>Tin</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1KxDAURoMoOP48gLuA6zq5Tds0Sxn8A9GFCu5C0qQzGdqmJik6G_EdfEOfxMgIrlzdzTnfhYPQCZAzIITNA5C6LDICdcZ5QbO3HTSDktGsqPPnXTQjvGRZUeb5PjoIYU0IqQpaz9D7tV2uug2OK-N7F6JUncFrZ4eIXYsX0_zO4rGT0Q7LeeP60QUbDX4Yvj4-yRlbTDi4ThuPX21cYam10UnCSnZdwK3zWFuDZYyyWfUmbdoBj-418b3TU2fCEdprZRfM8e89RE-XF4-L6-z2_upmcX6bNRSqmOlWAQOtKg0lAHBgXBdMM9VooMB5k2vVVKaVVMqWcaKobMp088IoRduCHqLT7e7o3ctkQhRrN_khvRQ54ZSTmlZ1omBLNd6F4E0rRm976TcCiPjJLLaZRcosfjKLt-TkWyckdlga_7f8v_QNorqDDQ</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Kadoguchi, Takuya</creator><creator>Take, Naoya</creator><creator>Yamanaka, Kimihiro</creator><creator>Nagao, Shijo</creator><creator>Suganuma, Katsuaki</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20181101</creationdate><title>Highly thermostable joint of Cu/Ni plating/composite Sn–0.7Cu solder with added Cu balls for die attachment in power modules</title><author>Kadoguchi, Takuya ; Take, Naoya ; Yamanaka, Kimihiro ; Nagao, Shijo ; Suganuma, Katsuaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-dfb171db6d151119179d47d7bcd13199c2dbc6efa3aaf790b3ac579024ebb3f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Attachment</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Diffusion barriers</topic><topic>Diffusion layers</topic><topic>Diffusion plating</topic><topic>Electric vehicles</topic><topic>Electroless plating</topic><topic>Hybrid electric vehicles</topic><topic>Interface reactions</topic><topic>Intermetallic compounds</topic><topic>Materials Science</topic><topic>Modules</topic><topic>Nickel compounds</topic><topic>Nickel plating</topic><topic>Optical and Electronic Materials</topic><topic>Soldered joints</topic><topic>Soldering</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadoguchi, Takuya</creatorcontrib><creatorcontrib>Take, Naoya</creatorcontrib><creatorcontrib>Yamanaka, Kimihiro</creatorcontrib><creatorcontrib>Nagao, Shijo</creatorcontrib><creatorcontrib>Suganuma, Katsuaki</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadoguchi, Takuya</au><au>Take, Naoya</au><au>Yamanaka, Kimihiro</au><au>Nagao, Shijo</au><au>Suganuma, Katsuaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly thermostable joint of Cu/Ni plating/composite Sn–0.7Cu solder with added Cu balls for die attachment in power modules</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>29</volume><issue>21</issue><spage>18290</spage><epage>18301</epage><pages>18290-18301</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Improving the reliability of solder joints for die attachment in power modules is one of the most important issues in creating environmentally friendly vehicles such as hybrid electric vehicles. Power modules must have highly reliable solder joints that must be thermostable at temperatures over 175 °C in the future. In die attachment, soldering surfaces are often finished with Ni plating, so for Cu/Ni plating/Sn–Cu solder joints it is necessary to suppress both Ni diffusion into the solder as well as growth of the (Ni,Cu)
3
Sn
4
intermetallic compound (IMC). Ni diffusion in Ni plating can be suppressed by the presence of a continuous (Cu,Ni)
6
Sn
5
IMC layer at the Ni plating/solder interface. To form this IMC, we investigated the interfacial reactions and growth behavior of IMC layers in the presence of composite Sn–0.7Cu solder with added Cu balls. Adding 2.5 mass% of Cu balls prompted the formation of a continuous (Cu,Ni)
6
Sn
5
IMC layer at both the electroless Ni–P and the electrolytic Ni plating, and this IMC layer worked well as a Ni diffusion barrier during a high-temperature storage test at 200 °C for 1000 h.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-018-9943-x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2018-11, Vol.29 (21), p.18290-18301 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2093908368 |
source | SpringerLink Journals - AutoHoldings |
subjects | Attachment Characterization and Evaluation of Materials Chemistry and Materials Science Copper Diffusion barriers Diffusion layers Diffusion plating Electric vehicles Electroless plating Hybrid electric vehicles Interface reactions Intermetallic compounds Materials Science Modules Nickel compounds Nickel plating Optical and Electronic Materials Soldered joints Soldering Tin |
title | Highly thermostable joint of Cu/Ni plating/composite Sn–0.7Cu solder with added Cu balls for die attachment in power modules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20thermostable%20joint%20of%20Cu/Ni%20plating/composite%20Sn%E2%80%930.7Cu%20solder%20with%20added%20Cu%20balls%20for%20die%20attachment%20in%20power%20modules&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Kadoguchi,%20Takuya&rft.date=2018-11-01&rft.volume=29&rft.issue=21&rft.spage=18290&rft.epage=18301&rft.pages=18290-18301&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-018-9943-x&rft_dat=%3Cproquest_cross%3E2093908368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2093908368&rft_id=info:pmid/&rfr_iscdi=true |