Composition‐Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement

Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovsk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2018-08, Vol.28 (35), p.n/a
Hauptverfasser: Zhou, Yang, Jia, Yong‐Heng, Fang, Hong‐Hua, Loi, Maria Antonietta, Xie, Fang‐Yan, Gong, Li, Qin, Min‐Chao, Lu, Xin‐Hui, Wong, Ching‐Ping, Zhao, Ni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 35
container_start_page
container_title Advanced functional materials
container_volume 28
creator Zhou, Yang
Jia, Yong‐Heng
Fang, Hong‐Hua
Loi, Maria Antonietta
Xie, Fang‐Yan
Gong, Li
Qin, Min‐Chao
Lu, Xin‐Hui
Wong, Ching‐Ping
Zhao, Ni
description Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovskite cell. However, WB‐OIHPs suffer from a large open‐circuit voltage (Voc) deficit in photovoltaic devices, which is associated with the phase segregation of the materials under light illumination. In this work the photoinstability is demonstrated and Voc loss can be addressed by combining grain crystallization and grain boundary passivation, achieved simultaneously through tuning of perovskite precursor composition. Using FA0.17Cs0.83PbI3–xBrx (x = 0.8, 1.2 1.5, and 1.8), with a varied bandgap from 1.72 to 1.93 eV, as the model system it is illustrated how precursor additive Pb(SCN)2 should be matched with a proper ratio of FAX (I and Br) to realize large grains with defect‐healed grain boundaries. The optimized WB‐OIHPs show good photostability at both room‐temperature and elevated temperature. Moreover, the corresponding solar cells exhibit excellent photovoltaic performances with the champion Voc/stabilized power output efficiency reaching 1.244 V/18.60%, 1.284 V/16.51%, 1.296 V/15.01%, and 1.312 V/14.35% for WB‐OIHPs with x = 0.8, 1.2, 1.5, and 1.8, respectively. The photoinduced phase segregation in wide bandgap hybrid perovskites are greatly suppressed by combining grain crystallization and grain boundary passivation. As a result, the open‐circuit voltage (Voc) loss of the corresponding devices is highly reduced, demonstrating a monotonic increase of Voc with increasing of bandgap from 1.72 to 1.93 eV.
doi_str_mv 10.1002/adfm.201803130
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2093254226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093254226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3960-4fdb63a89af0368d4e871e4ad630015f22b76d90decba7f62d1f49c6b79e6f203</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhSMEEqWwMltiTvFP6iRspbSlUhFIFMEWOfF15VLbwU5B3XgEnpEnIVVRGZnuGc53ztWJonOCewRjeimkMj2KSYYZYfgg6hBOeMwwzQ73mrwcRychLDEmacqSTmSGztQu6EY7-_35NV9bkOhZS0DXwsqFqNEDePceXnUD4QqNvTNo4oW2aGQX2gJ4bReoceixEaVe6WaDWm4LKeeNsBWgqanbBDBgm9PoSIlVgLPf242exqP58Dae3U-mw8EsrljOcZwoWXImslwozHgmE8hSAomQnLWP9xWlZcpljiVUpUgVp5KoJK94mebAFcWsG13sctvmtzWEpli6tbdtZUFxzmg_oZS3rt7OVXkXggdV1F4b4TcFwcV20mI7abGftAXyHfChV7D5x10MbsZ3f-wPH7x89g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093254226</pqid></control><display><type>article</type><title>Composition‐Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Yang ; Jia, Yong‐Heng ; Fang, Hong‐Hua ; Loi, Maria Antonietta ; Xie, Fang‐Yan ; Gong, Li ; Qin, Min‐Chao ; Lu, Xin‐Hui ; Wong, Ching‐Ping ; Zhao, Ni</creator><creatorcontrib>Zhou, Yang ; Jia, Yong‐Heng ; Fang, Hong‐Hua ; Loi, Maria Antonietta ; Xie, Fang‐Yan ; Gong, Li ; Qin, Min‐Chao ; Lu, Xin‐Hui ; Wong, Ching‐Ping ; Zhao, Ni</creatorcontrib><description>Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovskite cell. However, WB‐OIHPs suffer from a large open‐circuit voltage (Voc) deficit in photovoltaic devices, which is associated with the phase segregation of the materials under light illumination. In this work the photoinstability is demonstrated and Voc loss can be addressed by combining grain crystallization and grain boundary passivation, achieved simultaneously through tuning of perovskite precursor composition. Using FA0.17Cs0.83PbI3–xBrx (x = 0.8, 1.2 1.5, and 1.8), with a varied bandgap from 1.72 to 1.93 eV, as the model system it is illustrated how precursor additive Pb(SCN)2 should be matched with a proper ratio of FAX (I and Br) to realize large grains with defect‐healed grain boundaries. The optimized WB‐OIHPs show good photostability at both room‐temperature and elevated temperature. Moreover, the corresponding solar cells exhibit excellent photovoltaic performances with the champion Voc/stabilized power output efficiency reaching 1.244 V/18.60%, 1.284 V/16.51%, 1.296 V/15.01%, and 1.312 V/14.35% for WB‐OIHPs with x = 0.8, 1.2, 1.5, and 1.8, respectively. The photoinduced phase segregation in wide bandgap hybrid perovskites are greatly suppressed by combining grain crystallization and grain boundary passivation. As a result, the open‐circuit voltage (Voc) loss of the corresponding devices is highly reduced, demonstrating a monotonic increase of Voc with increasing of bandgap from 1.72 to 1.93 eV.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201803130</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Composition ; crystallinity ; Crystallization ; Facsimile communication ; Grain ; Grain boundaries ; grain boundaries passivation ; High temperature ; Light ; Materials science ; open‐circuit voltage deficit ; Perovskites ; photostability ; Photovoltaic cells ; Power efficiency ; Precursors ; Solar cells ; wide‐bandgap perovskites</subject><ispartof>Advanced functional materials, 2018-08, Vol.28 (35), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3960-4fdb63a89af0368d4e871e4ad630015f22b76d90decba7f62d1f49c6b79e6f203</citedby><cites>FETCH-LOGICAL-c3960-4fdb63a89af0368d4e871e4ad630015f22b76d90decba7f62d1f49c6b79e6f203</cites><orcidid>0000-0002-1536-8516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201803130$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201803130$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Jia, Yong‐Heng</creatorcontrib><creatorcontrib>Fang, Hong‐Hua</creatorcontrib><creatorcontrib>Loi, Maria Antonietta</creatorcontrib><creatorcontrib>Xie, Fang‐Yan</creatorcontrib><creatorcontrib>Gong, Li</creatorcontrib><creatorcontrib>Qin, Min‐Chao</creatorcontrib><creatorcontrib>Lu, Xin‐Hui</creatorcontrib><creatorcontrib>Wong, Ching‐Ping</creatorcontrib><creatorcontrib>Zhao, Ni</creatorcontrib><title>Composition‐Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement</title><title>Advanced functional materials</title><description>Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovskite cell. However, WB‐OIHPs suffer from a large open‐circuit voltage (Voc) deficit in photovoltaic devices, which is associated with the phase segregation of the materials under light illumination. In this work the photoinstability is demonstrated and Voc loss can be addressed by combining grain crystallization and grain boundary passivation, achieved simultaneously through tuning of perovskite precursor composition. Using FA0.17Cs0.83PbI3–xBrx (x = 0.8, 1.2 1.5, and 1.8), with a varied bandgap from 1.72 to 1.93 eV, as the model system it is illustrated how precursor additive Pb(SCN)2 should be matched with a proper ratio of FAX (I and Br) to realize large grains with defect‐healed grain boundaries. The optimized WB‐OIHPs show good photostability at both room‐temperature and elevated temperature. Moreover, the corresponding solar cells exhibit excellent photovoltaic performances with the champion Voc/stabilized power output efficiency reaching 1.244 V/18.60%, 1.284 V/16.51%, 1.296 V/15.01%, and 1.312 V/14.35% for WB‐OIHPs with x = 0.8, 1.2, 1.5, and 1.8, respectively. The photoinduced phase segregation in wide bandgap hybrid perovskites are greatly suppressed by combining grain crystallization and grain boundary passivation. As a result, the open‐circuit voltage (Voc) loss of the corresponding devices is highly reduced, demonstrating a monotonic increase of Voc with increasing of bandgap from 1.72 to 1.93 eV.</description><subject>Composition</subject><subject>crystallinity</subject><subject>Crystallization</subject><subject>Facsimile communication</subject><subject>Grain</subject><subject>Grain boundaries</subject><subject>grain boundaries passivation</subject><subject>High temperature</subject><subject>Light</subject><subject>Materials science</subject><subject>open‐circuit voltage deficit</subject><subject>Perovskites</subject><subject>photostability</subject><subject>Photovoltaic cells</subject><subject>Power efficiency</subject><subject>Precursors</subject><subject>Solar cells</subject><subject>wide‐bandgap perovskites</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhSMEEqWwMltiTvFP6iRspbSlUhFIFMEWOfF15VLbwU5B3XgEnpEnIVVRGZnuGc53ztWJonOCewRjeimkMj2KSYYZYfgg6hBOeMwwzQ73mrwcRychLDEmacqSTmSGztQu6EY7-_35NV9bkOhZS0DXwsqFqNEDePceXnUD4QqNvTNo4oW2aGQX2gJ4bReoceixEaVe6WaDWm4LKeeNsBWgqanbBDBgm9PoSIlVgLPf242exqP58Dae3U-mw8EsrljOcZwoWXImslwozHgmE8hSAomQnLWP9xWlZcpljiVUpUgVp5KoJK94mebAFcWsG13sctvmtzWEpli6tbdtZUFxzmg_oZS3rt7OVXkXggdV1F4b4TcFwcV20mI7abGftAXyHfChV7D5x10MbsZ3f-wPH7x89g</recordid><startdate>20180829</startdate><enddate>20180829</enddate><creator>Zhou, Yang</creator><creator>Jia, Yong‐Heng</creator><creator>Fang, Hong‐Hua</creator><creator>Loi, Maria Antonietta</creator><creator>Xie, Fang‐Yan</creator><creator>Gong, Li</creator><creator>Qin, Min‐Chao</creator><creator>Lu, Xin‐Hui</creator><creator>Wong, Ching‐Ping</creator><creator>Zhao, Ni</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1536-8516</orcidid></search><sort><creationdate>20180829</creationdate><title>Composition‐Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement</title><author>Zhou, Yang ; Jia, Yong‐Heng ; Fang, Hong‐Hua ; Loi, Maria Antonietta ; Xie, Fang‐Yan ; Gong, Li ; Qin, Min‐Chao ; Lu, Xin‐Hui ; Wong, Ching‐Ping ; Zhao, Ni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3960-4fdb63a89af0368d4e871e4ad630015f22b76d90decba7f62d1f49c6b79e6f203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Composition</topic><topic>crystallinity</topic><topic>Crystallization</topic><topic>Facsimile communication</topic><topic>Grain</topic><topic>Grain boundaries</topic><topic>grain boundaries passivation</topic><topic>High temperature</topic><topic>Light</topic><topic>Materials science</topic><topic>open‐circuit voltage deficit</topic><topic>Perovskites</topic><topic>photostability</topic><topic>Photovoltaic cells</topic><topic>Power efficiency</topic><topic>Precursors</topic><topic>Solar cells</topic><topic>wide‐bandgap perovskites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Jia, Yong‐Heng</creatorcontrib><creatorcontrib>Fang, Hong‐Hua</creatorcontrib><creatorcontrib>Loi, Maria Antonietta</creatorcontrib><creatorcontrib>Xie, Fang‐Yan</creatorcontrib><creatorcontrib>Gong, Li</creatorcontrib><creatorcontrib>Qin, Min‐Chao</creatorcontrib><creatorcontrib>Lu, Xin‐Hui</creatorcontrib><creatorcontrib>Wong, Ching‐Ping</creatorcontrib><creatorcontrib>Zhao, Ni</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yang</au><au>Jia, Yong‐Heng</au><au>Fang, Hong‐Hua</au><au>Loi, Maria Antonietta</au><au>Xie, Fang‐Yan</au><au>Gong, Li</au><au>Qin, Min‐Chao</au><au>Lu, Xin‐Hui</au><au>Wong, Ching‐Ping</au><au>Zhao, Ni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition‐Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement</atitle><jtitle>Advanced functional materials</jtitle><date>2018-08-29</date><risdate>2018</risdate><volume>28</volume><issue>35</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovskite cell. However, WB‐OIHPs suffer from a large open‐circuit voltage (Voc) deficit in photovoltaic devices, which is associated with the phase segregation of the materials under light illumination. In this work the photoinstability is demonstrated and Voc loss can be addressed by combining grain crystallization and grain boundary passivation, achieved simultaneously through tuning of perovskite precursor composition. Using FA0.17Cs0.83PbI3–xBrx (x = 0.8, 1.2 1.5, and 1.8), with a varied bandgap from 1.72 to 1.93 eV, as the model system it is illustrated how precursor additive Pb(SCN)2 should be matched with a proper ratio of FAX (I and Br) to realize large grains with defect‐healed grain boundaries. The optimized WB‐OIHPs show good photostability at both room‐temperature and elevated temperature. Moreover, the corresponding solar cells exhibit excellent photovoltaic performances with the champion Voc/stabilized power output efficiency reaching 1.244 V/18.60%, 1.284 V/16.51%, 1.296 V/15.01%, and 1.312 V/14.35% for WB‐OIHPs with x = 0.8, 1.2, 1.5, and 1.8, respectively. The photoinduced phase segregation in wide bandgap hybrid perovskites are greatly suppressed by combining grain crystallization and grain boundary passivation. As a result, the open‐circuit voltage (Voc) loss of the corresponding devices is highly reduced, demonstrating a monotonic increase of Voc with increasing of bandgap from 1.72 to 1.93 eV.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201803130</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1536-8516</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2018-08, Vol.28 (35), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2093254226
source Wiley Online Library Journals Frontfile Complete
subjects Composition
crystallinity
Crystallization
Facsimile communication
Grain
Grain boundaries
grain boundaries passivation
High temperature
Light
Materials science
open‐circuit voltage deficit
Perovskites
photostability
Photovoltaic cells
Power efficiency
Precursors
Solar cells
wide‐bandgap perovskites
title Composition‐Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A08%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%E2%80%90Tuned%20Wide%20Bandgap%20Perovskites:%20From%20Grain%20Engineering%20to%20Stability%20and%20Performance%20Improvement&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhou,%20Yang&rft.date=2018-08-29&rft.volume=28&rft.issue=35&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201803130&rft_dat=%3Cproquest_cross%3E2093254226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2093254226&rft_id=info:pmid/&rfr_iscdi=true