Composition‐Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement
Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovsk...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2018-08, Vol.28 (35), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 35 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 28 |
creator | Zhou, Yang Jia, Yong‐Heng Fang, Hong‐Hua Loi, Maria Antonietta Xie, Fang‐Yan Gong, Li Qin, Min‐Chao Lu, Xin‐Hui Wong, Ching‐Ping Zhao, Ni |
description | Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovskite cell. However, WB‐OIHPs suffer from a large open‐circuit voltage (Voc) deficit in photovoltaic devices, which is associated with the phase segregation of the materials under light illumination. In this work the photoinstability is demonstrated and Voc loss can be addressed by combining grain crystallization and grain boundary passivation, achieved simultaneously through tuning of perovskite precursor composition. Using FA0.17Cs0.83PbI3–xBrx (x = 0.8, 1.2 1.5, and 1.8), with a varied bandgap from 1.72 to 1.93 eV, as the model system it is illustrated how precursor additive Pb(SCN)2 should be matched with a proper ratio of FAX (I and Br) to realize large grains with defect‐healed grain boundaries. The optimized WB‐OIHPs show good photostability at both room‐temperature and elevated temperature. Moreover, the corresponding solar cells exhibit excellent photovoltaic performances with the champion Voc/stabilized power output efficiency reaching 1.244 V/18.60%, 1.284 V/16.51%, 1.296 V/15.01%, and 1.312 V/14.35% for WB‐OIHPs with x = 0.8, 1.2, 1.5, and 1.8, respectively.
The photoinduced phase segregation in wide bandgap hybrid perovskites are greatly suppressed by combining grain crystallization and grain boundary passivation. As a result, the open‐circuit voltage (Voc) loss of the corresponding devices is highly reduced, demonstrating a monotonic increase of Voc with increasing of bandgap from 1.72 to 1.93 eV. |
doi_str_mv | 10.1002/adfm.201803130 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2093254226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093254226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3960-4fdb63a89af0368d4e871e4ad630015f22b76d90decba7f62d1f49c6b79e6f203</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhSMEEqWwMltiTvFP6iRspbSlUhFIFMEWOfF15VLbwU5B3XgEnpEnIVVRGZnuGc53ztWJonOCewRjeimkMj2KSYYZYfgg6hBOeMwwzQ73mrwcRychLDEmacqSTmSGztQu6EY7-_35NV9bkOhZS0DXwsqFqNEDePceXnUD4QqNvTNo4oW2aGQX2gJ4bReoceixEaVe6WaDWm4LKeeNsBWgqanbBDBgm9PoSIlVgLPf242exqP58Dae3U-mw8EsrljOcZwoWXImslwozHgmE8hSAomQnLWP9xWlZcpljiVUpUgVp5KoJK94mebAFcWsG13sctvmtzWEpli6tbdtZUFxzmg_oZS3rt7OVXkXggdV1F4b4TcFwcV20mI7abGftAXyHfChV7D5x10MbsZ3f-wPH7x89g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093254226</pqid></control><display><type>article</type><title>Composition‐Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Yang ; Jia, Yong‐Heng ; Fang, Hong‐Hua ; Loi, Maria Antonietta ; Xie, Fang‐Yan ; Gong, Li ; Qin, Min‐Chao ; Lu, Xin‐Hui ; Wong, Ching‐Ping ; Zhao, Ni</creator><creatorcontrib>Zhou, Yang ; Jia, Yong‐Heng ; Fang, Hong‐Hua ; Loi, Maria Antonietta ; Xie, Fang‐Yan ; Gong, Li ; Qin, Min‐Chao ; Lu, Xin‐Hui ; Wong, Ching‐Ping ; Zhao, Ni</creatorcontrib><description>Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovskite cell. However, WB‐OIHPs suffer from a large open‐circuit voltage (Voc) deficit in photovoltaic devices, which is associated with the phase segregation of the materials under light illumination. In this work the photoinstability is demonstrated and Voc loss can be addressed by combining grain crystallization and grain boundary passivation, achieved simultaneously through tuning of perovskite precursor composition. Using FA0.17Cs0.83PbI3–xBrx (x = 0.8, 1.2 1.5, and 1.8), with a varied bandgap from 1.72 to 1.93 eV, as the model system it is illustrated how precursor additive Pb(SCN)2 should be matched with a proper ratio of FAX (I and Br) to realize large grains with defect‐healed grain boundaries. The optimized WB‐OIHPs show good photostability at both room‐temperature and elevated temperature. Moreover, the corresponding solar cells exhibit excellent photovoltaic performances with the champion Voc/stabilized power output efficiency reaching 1.244 V/18.60%, 1.284 V/16.51%, 1.296 V/15.01%, and 1.312 V/14.35% for WB‐OIHPs with x = 0.8, 1.2, 1.5, and 1.8, respectively.
The photoinduced phase segregation in wide bandgap hybrid perovskites are greatly suppressed by combining grain crystallization and grain boundary passivation. As a result, the open‐circuit voltage (Voc) loss of the corresponding devices is highly reduced, demonstrating a monotonic increase of Voc with increasing of bandgap from 1.72 to 1.93 eV.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201803130</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Composition ; crystallinity ; Crystallization ; Facsimile communication ; Grain ; Grain boundaries ; grain boundaries passivation ; High temperature ; Light ; Materials science ; open‐circuit voltage deficit ; Perovskites ; photostability ; Photovoltaic cells ; Power efficiency ; Precursors ; Solar cells ; wide‐bandgap perovskites</subject><ispartof>Advanced functional materials, 2018-08, Vol.28 (35), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3960-4fdb63a89af0368d4e871e4ad630015f22b76d90decba7f62d1f49c6b79e6f203</citedby><cites>FETCH-LOGICAL-c3960-4fdb63a89af0368d4e871e4ad630015f22b76d90decba7f62d1f49c6b79e6f203</cites><orcidid>0000-0002-1536-8516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201803130$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201803130$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Jia, Yong‐Heng</creatorcontrib><creatorcontrib>Fang, Hong‐Hua</creatorcontrib><creatorcontrib>Loi, Maria Antonietta</creatorcontrib><creatorcontrib>Xie, Fang‐Yan</creatorcontrib><creatorcontrib>Gong, Li</creatorcontrib><creatorcontrib>Qin, Min‐Chao</creatorcontrib><creatorcontrib>Lu, Xin‐Hui</creatorcontrib><creatorcontrib>Wong, Ching‐Ping</creatorcontrib><creatorcontrib>Zhao, Ni</creatorcontrib><title>Composition‐Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement</title><title>Advanced functional materials</title><description>Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovskite cell. However, WB‐OIHPs suffer from a large open‐circuit voltage (Voc) deficit in photovoltaic devices, which is associated with the phase segregation of the materials under light illumination. In this work the photoinstability is demonstrated and Voc loss can be addressed by combining grain crystallization and grain boundary passivation, achieved simultaneously through tuning of perovskite precursor composition. Using FA0.17Cs0.83PbI3–xBrx (x = 0.8, 1.2 1.5, and 1.8), with a varied bandgap from 1.72 to 1.93 eV, as the model system it is illustrated how precursor additive Pb(SCN)2 should be matched with a proper ratio of FAX (I and Br) to realize large grains with defect‐healed grain boundaries. The optimized WB‐OIHPs show good photostability at both room‐temperature and elevated temperature. Moreover, the corresponding solar cells exhibit excellent photovoltaic performances with the champion Voc/stabilized power output efficiency reaching 1.244 V/18.60%, 1.284 V/16.51%, 1.296 V/15.01%, and 1.312 V/14.35% for WB‐OIHPs with x = 0.8, 1.2, 1.5, and 1.8, respectively.
The photoinduced phase segregation in wide bandgap hybrid perovskites are greatly suppressed by combining grain crystallization and grain boundary passivation. As a result, the open‐circuit voltage (Voc) loss of the corresponding devices is highly reduced, demonstrating a monotonic increase of Voc with increasing of bandgap from 1.72 to 1.93 eV.</description><subject>Composition</subject><subject>crystallinity</subject><subject>Crystallization</subject><subject>Facsimile communication</subject><subject>Grain</subject><subject>Grain boundaries</subject><subject>grain boundaries passivation</subject><subject>High temperature</subject><subject>Light</subject><subject>Materials science</subject><subject>open‐circuit voltage deficit</subject><subject>Perovskites</subject><subject>photostability</subject><subject>Photovoltaic cells</subject><subject>Power efficiency</subject><subject>Precursors</subject><subject>Solar cells</subject><subject>wide‐bandgap perovskites</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhSMEEqWwMltiTvFP6iRspbSlUhFIFMEWOfF15VLbwU5B3XgEnpEnIVVRGZnuGc53ztWJonOCewRjeimkMj2KSYYZYfgg6hBOeMwwzQ73mrwcRychLDEmacqSTmSGztQu6EY7-_35NV9bkOhZS0DXwsqFqNEDePceXnUD4QqNvTNo4oW2aGQX2gJ4bReoceixEaVe6WaDWm4LKeeNsBWgqanbBDBgm9PoSIlVgLPf242exqP58Dae3U-mw8EsrljOcZwoWXImslwozHgmE8hSAomQnLWP9xWlZcpljiVUpUgVp5KoJK94mebAFcWsG13sctvmtzWEpli6tbdtZUFxzmg_oZS3rt7OVXkXggdV1F4b4TcFwcV20mI7abGftAXyHfChV7D5x10MbsZ3f-wPH7x89g</recordid><startdate>20180829</startdate><enddate>20180829</enddate><creator>Zhou, Yang</creator><creator>Jia, Yong‐Heng</creator><creator>Fang, Hong‐Hua</creator><creator>Loi, Maria Antonietta</creator><creator>Xie, Fang‐Yan</creator><creator>Gong, Li</creator><creator>Qin, Min‐Chao</creator><creator>Lu, Xin‐Hui</creator><creator>Wong, Ching‐Ping</creator><creator>Zhao, Ni</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1536-8516</orcidid></search><sort><creationdate>20180829</creationdate><title>Composition‐Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement</title><author>Zhou, Yang ; Jia, Yong‐Heng ; Fang, Hong‐Hua ; Loi, Maria Antonietta ; Xie, Fang‐Yan ; Gong, Li ; Qin, Min‐Chao ; Lu, Xin‐Hui ; Wong, Ching‐Ping ; Zhao, Ni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3960-4fdb63a89af0368d4e871e4ad630015f22b76d90decba7f62d1f49c6b79e6f203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Composition</topic><topic>crystallinity</topic><topic>Crystallization</topic><topic>Facsimile communication</topic><topic>Grain</topic><topic>Grain boundaries</topic><topic>grain boundaries passivation</topic><topic>High temperature</topic><topic>Light</topic><topic>Materials science</topic><topic>open‐circuit voltage deficit</topic><topic>Perovskites</topic><topic>photostability</topic><topic>Photovoltaic cells</topic><topic>Power efficiency</topic><topic>Precursors</topic><topic>Solar cells</topic><topic>wide‐bandgap perovskites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Jia, Yong‐Heng</creatorcontrib><creatorcontrib>Fang, Hong‐Hua</creatorcontrib><creatorcontrib>Loi, Maria Antonietta</creatorcontrib><creatorcontrib>Xie, Fang‐Yan</creatorcontrib><creatorcontrib>Gong, Li</creatorcontrib><creatorcontrib>Qin, Min‐Chao</creatorcontrib><creatorcontrib>Lu, Xin‐Hui</creatorcontrib><creatorcontrib>Wong, Ching‐Ping</creatorcontrib><creatorcontrib>Zhao, Ni</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yang</au><au>Jia, Yong‐Heng</au><au>Fang, Hong‐Hua</au><au>Loi, Maria Antonietta</au><au>Xie, Fang‐Yan</au><au>Gong, Li</au><au>Qin, Min‐Chao</au><au>Lu, Xin‐Hui</au><au>Wong, Ching‐Ping</au><au>Zhao, Ni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition‐Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement</atitle><jtitle>Advanced functional materials</jtitle><date>2018-08-29</date><risdate>2018</risdate><volume>28</volume><issue>35</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovskite cell. However, WB‐OIHPs suffer from a large open‐circuit voltage (Voc) deficit in photovoltaic devices, which is associated with the phase segregation of the materials under light illumination. In this work the photoinstability is demonstrated and Voc loss can be addressed by combining grain crystallization and grain boundary passivation, achieved simultaneously through tuning of perovskite precursor composition. Using FA0.17Cs0.83PbI3–xBrx (x = 0.8, 1.2 1.5, and 1.8), with a varied bandgap from 1.72 to 1.93 eV, as the model system it is illustrated how precursor additive Pb(SCN)2 should be matched with a proper ratio of FAX (I and Br) to realize large grains with defect‐healed grain boundaries. The optimized WB‐OIHPs show good photostability at both room‐temperature and elevated temperature. Moreover, the corresponding solar cells exhibit excellent photovoltaic performances with the champion Voc/stabilized power output efficiency reaching 1.244 V/18.60%, 1.284 V/16.51%, 1.296 V/15.01%, and 1.312 V/14.35% for WB‐OIHPs with x = 0.8, 1.2, 1.5, and 1.8, respectively.
The photoinduced phase segregation in wide bandgap hybrid perovskites are greatly suppressed by combining grain crystallization and grain boundary passivation. As a result, the open‐circuit voltage (Voc) loss of the corresponding devices is highly reduced, demonstrating a monotonic increase of Voc with increasing of bandgap from 1.72 to 1.93 eV.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201803130</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1536-8516</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2018-08, Vol.28 (35), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2093254226 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Composition crystallinity Crystallization Facsimile communication Grain Grain boundaries grain boundaries passivation High temperature Light Materials science open‐circuit voltage deficit Perovskites photostability Photovoltaic cells Power efficiency Precursors Solar cells wide‐bandgap perovskites |
title | Composition‐Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A08%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%E2%80%90Tuned%20Wide%20Bandgap%20Perovskites:%20From%20Grain%20Engineering%20to%20Stability%20and%20Performance%20Improvement&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhou,%20Yang&rft.date=2018-08-29&rft.volume=28&rft.issue=35&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201803130&rft_dat=%3Cproquest_cross%3E2093254226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2093254226&rft_id=info:pmid/&rfr_iscdi=true |