Atomically Dispersed Fe‐Nx/C Electrocatalyst Boosts Oxygen Catalysis via a New Metal‐Organic Polymer Supramolecule Strategy

The development of high‐performance oxygen reduction reaction (ORR) catalysts derived from non‐Pt group metals (non‐PGMs) is urgent for the wide applications of proton exchange membrane fuel cells (PEMFCs). In this work, a facile and cost‐efficient supramolecular route is developed for making non‐PG...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2018-08, Vol.8 (24), p.n/a
Hauptverfasser: Miao, Zhengpei, Wang, Xiaoming, Tsai, Meng‐Che, Jin, Qianqian, Liang, Jiashun, Ma, Feng, Wang, Tanyuan, Zheng, Shijian, Hwang, Bing‐Joe, Huang, Yunhui, Guo, Shaojun, Li, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Advanced energy materials
container_volume 8
creator Miao, Zhengpei
Wang, Xiaoming
Tsai, Meng‐Che
Jin, Qianqian
Liang, Jiashun
Ma, Feng
Wang, Tanyuan
Zheng, Shijian
Hwang, Bing‐Joe
Huang, Yunhui
Guo, Shaojun
Li, Qing
description The development of high‐performance oxygen reduction reaction (ORR) catalysts derived from non‐Pt group metals (non‐PGMs) is urgent for the wide applications of proton exchange membrane fuel cells (PEMFCs). In this work, a facile and cost‐efficient supramolecular route is developed for making non‐PGM ORR catalyst with atomically dispersed Fe‐Nx/C sites through pyrolyzing the metal‐organic polymer coordinative hydrogel formed between Fe3+ and α‐L‐guluronate blocks of sodium alginate (SA). High‐angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption spectroscopy (XAS) verify that Fe atoms achieve atomic‐level dispersion on the obtained SA‐Fe‐N nanosheets and a possible fourfold coordination with N atoms. The best‐performing SA‐Fe‐N catalyst exhibits excellent ORR activity with half‐wave potential (E1/2) of 0.812 and 0.910 V versus the reversible hydrogen electrode (RHE) in 0.5 m H2SO4 and 0.1 m KOH, respectively, along with respectable durability. Such performance surpasses that of most reported non‐PGM ORR catalysts. Density functional theory calculations suggest that the relieved passivation effect of OH* on Fe‐N4/C structure leads to its superior ORR activity to Pt/C in alkaline solution. The work demonstrates a novel strategy for developing high‐performance non‐PGM ORR electrocatalysts with atomically dispersed and stable M‐Nx coordination sites in both acidic and alkaline media. A novel non‐Pt group metal oxygen reduction reaction (non‐PGM ORR) catalyst with atomically dispersed Fe‐Nx/C sites is developed through a metal‐organic polymer supramolecule strategy. The pH‐universal catalyst delivers extraordinarily high ORR activity and stability. Theoretical calculations suggest that the relieved passivation effect of OH* on Fe‐N4/C structure leads to its superior ORR activity to Pt/C in alkaline solution.
doi_str_mv 10.1002/aenm.201801226
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2093214132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093214132</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2516-b92871f69e895f362c6ef8ef6c494255232777aaaddcdf6751eea136a156a7813</originalsourceid><addsrcrecordid>eNo9kE1Pg0AQhonRxKb26nkTz7T7AQscK7Zq0g-T6nkzwkBogK27YMtJf4K_0V8iTU3nMjNv3nkneRznltExo5RPAOtqzCkLKeNcXjgDJpnnytCjl-dZ8GtnZO2W9uVFjAoxcL6mja6KBMqyIw-F3aGxmJI5_n7_rA6TmMxKTBqjE2ig7GxD7rW2jSXrQ5djTeKTXFjyWQABssI9WWKv9edrk0NdJORFl12FhmzanYFK93ltiWTTGGgw726cqwxKi6P_PnTe5rPX-MldrB-f4-nCzbnPpPse8TBgmYwwjPxMSJ5IzELMZOJFHvd9LngQBACQpkmaycBniMCEBOZLCEImhs7dKXdn9EeLtlFb3Zq6f6k4jQRnHhO8d0Un174osVM7U1RgOsWoOkJWR8jqDFlNZ6vleRN_uc91sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093214132</pqid></control><display><type>article</type><title>Atomically Dispersed Fe‐Nx/C Electrocatalyst Boosts Oxygen Catalysis via a New Metal‐Organic Polymer Supramolecule Strategy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Miao, Zhengpei ; Wang, Xiaoming ; Tsai, Meng‐Che ; Jin, Qianqian ; Liang, Jiashun ; Ma, Feng ; Wang, Tanyuan ; Zheng, Shijian ; Hwang, Bing‐Joe ; Huang, Yunhui ; Guo, Shaojun ; Li, Qing</creator><creatorcontrib>Miao, Zhengpei ; Wang, Xiaoming ; Tsai, Meng‐Che ; Jin, Qianqian ; Liang, Jiashun ; Ma, Feng ; Wang, Tanyuan ; Zheng, Shijian ; Hwang, Bing‐Joe ; Huang, Yunhui ; Guo, Shaojun ; Li, Qing</creatorcontrib><description>The development of high‐performance oxygen reduction reaction (ORR) catalysts derived from non‐Pt group metals (non‐PGMs) is urgent for the wide applications of proton exchange membrane fuel cells (PEMFCs). In this work, a facile and cost‐efficient supramolecular route is developed for making non‐PGM ORR catalyst with atomically dispersed Fe‐Nx/C sites through pyrolyzing the metal‐organic polymer coordinative hydrogel formed between Fe3+ and α‐L‐guluronate blocks of sodium alginate (SA). High‐angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption spectroscopy (XAS) verify that Fe atoms achieve atomic‐level dispersion on the obtained SA‐Fe‐N nanosheets and a possible fourfold coordination with N atoms. The best‐performing SA‐Fe‐N catalyst exhibits excellent ORR activity with half‐wave potential (E1/2) of 0.812 and 0.910 V versus the reversible hydrogen electrode (RHE) in 0.5 m H2SO4 and 0.1 m KOH, respectively, along with respectable durability. Such performance surpasses that of most reported non‐PGM ORR catalysts. Density functional theory calculations suggest that the relieved passivation effect of OH* on Fe‐N4/C structure leads to its superior ORR activity to Pt/C in alkaline solution. The work demonstrates a novel strategy for developing high‐performance non‐PGM ORR electrocatalysts with atomically dispersed and stable M‐Nx coordination sites in both acidic and alkaline media. A novel non‐Pt group metal oxygen reduction reaction (non‐PGM ORR) catalyst with atomically dispersed Fe‐Nx/C sites is developed through a metal‐organic polymer supramolecule strategy. The pH‐universal catalyst delivers extraordinarily high ORR activity and stability. Theoretical calculations suggest that the relieved passivation effect of OH* on Fe‐N4/C structure leads to its superior ORR activity to Pt/C in alkaline solution.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201801226</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalysts ; Density functional theory ; electrocatalysis ; Electrocatalysts ; energy conversion ; fuel cells ; Hydrogels ; Iron ; oxygen reduction reaction ; Oxygen reduction reactions ; Polymers ; Proton exchange membrane fuel cells ; Scanning electron microscopy ; Scanning transmission electron microscopy ; single atom catalyst ; Sodium alginate ; Sulfuric acid ; Transmission electron microscopy ; Wave dispersion</subject><ispartof>Advanced energy materials, 2018-08, Vol.8 (24), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4427-6837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201801226$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201801226$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Miao, Zhengpei</creatorcontrib><creatorcontrib>Wang, Xiaoming</creatorcontrib><creatorcontrib>Tsai, Meng‐Che</creatorcontrib><creatorcontrib>Jin, Qianqian</creatorcontrib><creatorcontrib>Liang, Jiashun</creatorcontrib><creatorcontrib>Ma, Feng</creatorcontrib><creatorcontrib>Wang, Tanyuan</creatorcontrib><creatorcontrib>Zheng, Shijian</creatorcontrib><creatorcontrib>Hwang, Bing‐Joe</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><title>Atomically Dispersed Fe‐Nx/C Electrocatalyst Boosts Oxygen Catalysis via a New Metal‐Organic Polymer Supramolecule Strategy</title><title>Advanced energy materials</title><description>The development of high‐performance oxygen reduction reaction (ORR) catalysts derived from non‐Pt group metals (non‐PGMs) is urgent for the wide applications of proton exchange membrane fuel cells (PEMFCs). In this work, a facile and cost‐efficient supramolecular route is developed for making non‐PGM ORR catalyst with atomically dispersed Fe‐Nx/C sites through pyrolyzing the metal‐organic polymer coordinative hydrogel formed between Fe3+ and α‐L‐guluronate blocks of sodium alginate (SA). High‐angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption spectroscopy (XAS) verify that Fe atoms achieve atomic‐level dispersion on the obtained SA‐Fe‐N nanosheets and a possible fourfold coordination with N atoms. The best‐performing SA‐Fe‐N catalyst exhibits excellent ORR activity with half‐wave potential (E1/2) of 0.812 and 0.910 V versus the reversible hydrogen electrode (RHE) in 0.5 m H2SO4 and 0.1 m KOH, respectively, along with respectable durability. Such performance surpasses that of most reported non‐PGM ORR catalysts. Density functional theory calculations suggest that the relieved passivation effect of OH* on Fe‐N4/C structure leads to its superior ORR activity to Pt/C in alkaline solution. The work demonstrates a novel strategy for developing high‐performance non‐PGM ORR electrocatalysts with atomically dispersed and stable M‐Nx coordination sites in both acidic and alkaline media. A novel non‐Pt group metal oxygen reduction reaction (non‐PGM ORR) catalyst with atomically dispersed Fe‐Nx/C sites is developed through a metal‐organic polymer supramolecule strategy. The pH‐universal catalyst delivers extraordinarily high ORR activity and stability. Theoretical calculations suggest that the relieved passivation effect of OH* on Fe‐N4/C structure leads to its superior ORR activity to Pt/C in alkaline solution.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Density functional theory</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>energy conversion</subject><subject>fuel cells</subject><subject>Hydrogels</subject><subject>Iron</subject><subject>oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>Polymers</subject><subject>Proton exchange membrane fuel cells</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>single atom catalyst</subject><subject>Sodium alginate</subject><subject>Sulfuric acid</subject><subject>Transmission electron microscopy</subject><subject>Wave dispersion</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Pg0AQhonRxKb26nkTz7T7AQscK7Zq0g-T6nkzwkBogK27YMtJf4K_0V8iTU3nMjNv3nkneRznltExo5RPAOtqzCkLKeNcXjgDJpnnytCjl-dZ8GtnZO2W9uVFjAoxcL6mja6KBMqyIw-F3aGxmJI5_n7_rA6TmMxKTBqjE2ig7GxD7rW2jSXrQ5djTeKTXFjyWQABssI9WWKv9edrk0NdJORFl12FhmzanYFK93ltiWTTGGgw726cqwxKi6P_PnTe5rPX-MldrB-f4-nCzbnPpPse8TBgmYwwjPxMSJ5IzELMZOJFHvd9LngQBACQpkmaycBniMCEBOZLCEImhs7dKXdn9EeLtlFb3Zq6f6k4jQRnHhO8d0Un174osVM7U1RgOsWoOkJWR8jqDFlNZ6vleRN_uc91sw</recordid><startdate>20180827</startdate><enddate>20180827</enddate><creator>Miao, Zhengpei</creator><creator>Wang, Xiaoming</creator><creator>Tsai, Meng‐Che</creator><creator>Jin, Qianqian</creator><creator>Liang, Jiashun</creator><creator>Ma, Feng</creator><creator>Wang, Tanyuan</creator><creator>Zheng, Shijian</creator><creator>Hwang, Bing‐Joe</creator><creator>Huang, Yunhui</creator><creator>Guo, Shaojun</creator><creator>Li, Qing</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4427-6837</orcidid></search><sort><creationdate>20180827</creationdate><title>Atomically Dispersed Fe‐Nx/C Electrocatalyst Boosts Oxygen Catalysis via a New Metal‐Organic Polymer Supramolecule Strategy</title><author>Miao, Zhengpei ; Wang, Xiaoming ; Tsai, Meng‐Che ; Jin, Qianqian ; Liang, Jiashun ; Ma, Feng ; Wang, Tanyuan ; Zheng, Shijian ; Hwang, Bing‐Joe ; Huang, Yunhui ; Guo, Shaojun ; Li, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2516-b92871f69e895f362c6ef8ef6c494255232777aaaddcdf6751eea136a156a7813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Density functional theory</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>energy conversion</topic><topic>fuel cells</topic><topic>Hydrogels</topic><topic>Iron</topic><topic>oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>Polymers</topic><topic>Proton exchange membrane fuel cells</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>single atom catalyst</topic><topic>Sodium alginate</topic><topic>Sulfuric acid</topic><topic>Transmission electron microscopy</topic><topic>Wave dispersion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Zhengpei</creatorcontrib><creatorcontrib>Wang, Xiaoming</creatorcontrib><creatorcontrib>Tsai, Meng‐Che</creatorcontrib><creatorcontrib>Jin, Qianqian</creatorcontrib><creatorcontrib>Liang, Jiashun</creatorcontrib><creatorcontrib>Ma, Feng</creatorcontrib><creatorcontrib>Wang, Tanyuan</creatorcontrib><creatorcontrib>Zheng, Shijian</creatorcontrib><creatorcontrib>Hwang, Bing‐Joe</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Zhengpei</au><au>Wang, Xiaoming</au><au>Tsai, Meng‐Che</au><au>Jin, Qianqian</au><au>Liang, Jiashun</au><au>Ma, Feng</au><au>Wang, Tanyuan</au><au>Zheng, Shijian</au><au>Hwang, Bing‐Joe</au><au>Huang, Yunhui</au><au>Guo, Shaojun</au><au>Li, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomically Dispersed Fe‐Nx/C Electrocatalyst Boosts Oxygen Catalysis via a New Metal‐Organic Polymer Supramolecule Strategy</atitle><jtitle>Advanced energy materials</jtitle><date>2018-08-27</date><risdate>2018</risdate><volume>8</volume><issue>24</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The development of high‐performance oxygen reduction reaction (ORR) catalysts derived from non‐Pt group metals (non‐PGMs) is urgent for the wide applications of proton exchange membrane fuel cells (PEMFCs). In this work, a facile and cost‐efficient supramolecular route is developed for making non‐PGM ORR catalyst with atomically dispersed Fe‐Nx/C sites through pyrolyzing the metal‐organic polymer coordinative hydrogel formed between Fe3+ and α‐L‐guluronate blocks of sodium alginate (SA). High‐angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption spectroscopy (XAS) verify that Fe atoms achieve atomic‐level dispersion on the obtained SA‐Fe‐N nanosheets and a possible fourfold coordination with N atoms. The best‐performing SA‐Fe‐N catalyst exhibits excellent ORR activity with half‐wave potential (E1/2) of 0.812 and 0.910 V versus the reversible hydrogen electrode (RHE) in 0.5 m H2SO4 and 0.1 m KOH, respectively, along with respectable durability. Such performance surpasses that of most reported non‐PGM ORR catalysts. Density functional theory calculations suggest that the relieved passivation effect of OH* on Fe‐N4/C structure leads to its superior ORR activity to Pt/C in alkaline solution. The work demonstrates a novel strategy for developing high‐performance non‐PGM ORR electrocatalysts with atomically dispersed and stable M‐Nx coordination sites in both acidic and alkaline media. A novel non‐Pt group metal oxygen reduction reaction (non‐PGM ORR) catalyst with atomically dispersed Fe‐Nx/C sites is developed through a metal‐organic polymer supramolecule strategy. The pH‐universal catalyst delivers extraordinarily high ORR activity and stability. Theoretical calculations suggest that the relieved passivation effect of OH* on Fe‐N4/C structure leads to its superior ORR activity to Pt/C in alkaline solution.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201801226</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4427-6837</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2018-08, Vol.8 (24), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2093214132
source Wiley Online Library Journals Frontfile Complete
subjects Catalysis
Catalysts
Density functional theory
electrocatalysis
Electrocatalysts
energy conversion
fuel cells
Hydrogels
Iron
oxygen reduction reaction
Oxygen reduction reactions
Polymers
Proton exchange membrane fuel cells
Scanning electron microscopy
Scanning transmission electron microscopy
single atom catalyst
Sodium alginate
Sulfuric acid
Transmission electron microscopy
Wave dispersion
title Atomically Dispersed Fe‐Nx/C Electrocatalyst Boosts Oxygen Catalysis via a New Metal‐Organic Polymer Supramolecule Strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A39%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomically%20Dispersed%20Fe%E2%80%90Nx/C%20Electrocatalyst%20Boosts%20Oxygen%20Catalysis%20via%20a%20New%20Metal%E2%80%90Organic%20Polymer%20Supramolecule%20Strategy&rft.jtitle=Advanced%20energy%20materials&rft.au=Miao,%20Zhengpei&rft.date=2018-08-27&rft.volume=8&rft.issue=24&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201801226&rft_dat=%3Cproquest_wiley%3E2093214132%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2093214132&rft_id=info:pmid/&rfr_iscdi=true