Structure and Magnetic Properties of WC–50% Co Model Alloys Containing TaC Additives
The structure and magnetic properties of model high-cobalt WC–50% Co alloys with different carbon contents and TaC additions in the amount of 1.6–5.6 wt % are studied. Model alloys are fabricated by the liquid-phase sintering of powder mixtures at 1420°C, and their composition is described by the fo...
Gespeichert in:
Veröffentlicht in: | Russian journal of non-ferrous metals 2018-07, Vol.59 (4), p.403-411 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 411 |
---|---|
container_issue | 4 |
container_start_page | 403 |
container_title | Russian journal of non-ferrous metals |
container_volume | 59 |
creator | Zaitsev, A. A. Konyashin, I. Yu Avdeenko, E. N. Svyndina, N. V. Levashov, E. A. |
description | The structure and magnetic properties of model high-cobalt WC–50% Co alloys with different carbon contents and TaC additions in the amount of 1.6–5.6 wt % are studied. Model alloys are fabricated by the liquid-phase sintering of powder mixtures at 1420°C, and their composition is described by the formula 50% Co + 50% WC +
x
% TaC +
y
% C, where
x
= 0, 1.6, 2.6, 3.6, 4.6, and 5.6 wt %;
y
= 0, 0.2, and 0.5 wt %. It is shown that precipitations of the (Ta,W)C phase are present in all studied alloys and (Ta,W)C precipitations are needle-shaped at a TaC concentration up to 3.6 wt %, while the (Ta,W)C grains become spherical at =3.6 wt %. The (Ta,W)C precipitations are arranged both in a binding phase and along the WC grain boundaries. The lattice parameter of the (Ta,W)C phase in alloys with a low carbon content lies in a range from 0.4438 nm for the alloy with 1.6% TaC to 0.4451 nm for the alloy with 4.6% TaC. It is established by the EDX analysis that the concentration of dissolved tungsten in a cobalt phase is independent of the TaC content and strongly depends on the total carbon content; it is 7, 12, and 17 wt % for alloys with high, elevated, and low carbon contents, respectively. The TaC addition in alloys with a low and elevated carbon content leads to an increase in the coercive force up to 875 A/m and a decrease in the magnetic saturation by 5–10 G m
3
/g. The experimental results made it possible to put forward a hypothesis on the possibility of formation of dispersed tantalum-containing precipitates in a binder phase. |
doi_str_mv | 10.3103/S1067821218040132 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2093063246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093063246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-29cb6c7f1741c34ff1f5a0d2a1960138255e194b7078a36384a937aa0ae725653</originalsourceid><addsrcrecordid>eNp1UN1KwzAUDqLgnD6AdwHxsnqSNE1zOYp_sKGw-XNXsjYtHTWZSSrsznfwDX0SMyZ4IV6dc_j-OB9CpwQuGAF2OSeQiZwSSnJIgTC6h0ZEsjSRAl724x7hZIsfoiPvVwCcSy5H6Gke3FCFwWmsTI1nqjU6dBV-cHatXei0x7bBz8XXxyeHc1xYPLO17vGk7-3Gx9sE1ZnOtHihCjyp6y5079ofo4NG9V6f_Mwxery-WhS3yfT-5q6YTJOKcRkSKqtlVomGiJRULG0a0nAFNVVEZvGJnHKuiUyXAkSuWMbyVEkmlAKlBeUZZ2N0tvNdO_s2aB_KlR2ciZElBckgYzTNIovsWJWz3jvdlGvXvSq3KQmU2_rKP_VFDd1pfOSaVrtf5_9F34eKb4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093063246</pqid></control><display><type>article</type><title>Structure and Magnetic Properties of WC–50% Co Model Alloys Containing TaC Additives</title><source>SpringerLink Journals</source><creator>Zaitsev, A. A. ; Konyashin, I. Yu ; Avdeenko, E. N. ; Svyndina, N. V. ; Levashov, E. A.</creator><creatorcontrib>Zaitsev, A. A. ; Konyashin, I. Yu ; Avdeenko, E. N. ; Svyndina, N. V. ; Levashov, E. A.</creatorcontrib><description>The structure and magnetic properties of model high-cobalt WC–50% Co alloys with different carbon contents and TaC additions in the amount of 1.6–5.6 wt % are studied. Model alloys are fabricated by the liquid-phase sintering of powder mixtures at 1420°C, and their composition is described by the formula 50% Co + 50% WC +
x
% TaC +
y
% C, where
x
= 0, 1.6, 2.6, 3.6, 4.6, and 5.6 wt %;
y
= 0, 0.2, and 0.5 wt %. It is shown that precipitations of the (Ta,W)C phase are present in all studied alloys and (Ta,W)C precipitations are needle-shaped at a TaC concentration up to 3.6 wt %, while the (Ta,W)C grains become spherical at =3.6 wt %. The (Ta,W)C precipitations are arranged both in a binding phase and along the WC grain boundaries. The lattice parameter of the (Ta,W)C phase in alloys with a low carbon content lies in a range from 0.4438 nm for the alloy with 1.6% TaC to 0.4451 nm for the alloy with 4.6% TaC. It is established by the EDX analysis that the concentration of dissolved tungsten in a cobalt phase is independent of the TaC content and strongly depends on the total carbon content; it is 7, 12, and 17 wt % for alloys with high, elevated, and low carbon contents, respectively. The TaC addition in alloys with a low and elevated carbon content leads to an increase in the coercive force up to 875 A/m and a decrease in the magnetic saturation by 5–10 G m
3
/g. The experimental results made it possible to put forward a hypothesis on the possibility of formation of dispersed tantalum-containing precipitates in a binder phase.</description><identifier>ISSN: 1067-8212</identifier><identifier>EISSN: 1934-970X</identifier><identifier>DOI: 10.3103/S1067821218040132</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Additives ; Alloying additive ; Alloys ; Carbon ; Carbon content ; Chemistry and Materials Science ; Cobalt base alloys ; Coercivity ; Grain boundaries ; Liquid phase sintering ; Liquid phases ; Magnetic properties ; Magnetic saturation ; Materials Science ; Metallic Materials ; Physical Metallurgy and Heat Treatment ; Precipitates ; Tantalum ; Tungsten carbide</subject><ispartof>Russian journal of non-ferrous metals, 2018-07, Vol.59 (4), p.403-411</ispartof><rights>Allerton Press, Inc. 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-29cb6c7f1741c34ff1f5a0d2a1960138255e194b7078a36384a937aa0ae725653</citedby><cites>FETCH-LOGICAL-c359t-29cb6c7f1741c34ff1f5a0d2a1960138255e194b7078a36384a937aa0ae725653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1067821218040132$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1067821218040132$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zaitsev, A. A.</creatorcontrib><creatorcontrib>Konyashin, I. Yu</creatorcontrib><creatorcontrib>Avdeenko, E. N.</creatorcontrib><creatorcontrib>Svyndina, N. V.</creatorcontrib><creatorcontrib>Levashov, E. A.</creatorcontrib><title>Structure and Magnetic Properties of WC–50% Co Model Alloys Containing TaC Additives</title><title>Russian journal of non-ferrous metals</title><addtitle>Russ. J. Non-ferrous Metals</addtitle><description>The structure and magnetic properties of model high-cobalt WC–50% Co alloys with different carbon contents and TaC additions in the amount of 1.6–5.6 wt % are studied. Model alloys are fabricated by the liquid-phase sintering of powder mixtures at 1420°C, and their composition is described by the formula 50% Co + 50% WC +
x
% TaC +
y
% C, where
x
= 0, 1.6, 2.6, 3.6, 4.6, and 5.6 wt %;
y
= 0, 0.2, and 0.5 wt %. It is shown that precipitations of the (Ta,W)C phase are present in all studied alloys and (Ta,W)C precipitations are needle-shaped at a TaC concentration up to 3.6 wt %, while the (Ta,W)C grains become spherical at =3.6 wt %. The (Ta,W)C precipitations are arranged both in a binding phase and along the WC grain boundaries. The lattice parameter of the (Ta,W)C phase in alloys with a low carbon content lies in a range from 0.4438 nm for the alloy with 1.6% TaC to 0.4451 nm for the alloy with 4.6% TaC. It is established by the EDX analysis that the concentration of dissolved tungsten in a cobalt phase is independent of the TaC content and strongly depends on the total carbon content; it is 7, 12, and 17 wt % for alloys with high, elevated, and low carbon contents, respectively. The TaC addition in alloys with a low and elevated carbon content leads to an increase in the coercive force up to 875 A/m and a decrease in the magnetic saturation by 5–10 G m
3
/g. The experimental results made it possible to put forward a hypothesis on the possibility of formation of dispersed tantalum-containing precipitates in a binder phase.</description><subject>Additives</subject><subject>Alloying additive</subject><subject>Alloys</subject><subject>Carbon</subject><subject>Carbon content</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt base alloys</subject><subject>Coercivity</subject><subject>Grain boundaries</subject><subject>Liquid phase sintering</subject><subject>Liquid phases</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Physical Metallurgy and Heat Treatment</subject><subject>Precipitates</subject><subject>Tantalum</subject><subject>Tungsten carbide</subject><issn>1067-8212</issn><issn>1934-970X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UN1KwzAUDqLgnD6AdwHxsnqSNE1zOYp_sKGw-XNXsjYtHTWZSSrsznfwDX0SMyZ4IV6dc_j-OB9CpwQuGAF2OSeQiZwSSnJIgTC6h0ZEsjSRAl724x7hZIsfoiPvVwCcSy5H6Gke3FCFwWmsTI1nqjU6dBV-cHatXei0x7bBz8XXxyeHc1xYPLO17vGk7-3Gx9sE1ZnOtHihCjyp6y5079ofo4NG9V6f_Mwxery-WhS3yfT-5q6YTJOKcRkSKqtlVomGiJRULG0a0nAFNVVEZvGJnHKuiUyXAkSuWMbyVEkmlAKlBeUZZ2N0tvNdO_s2aB_KlR2ciZElBckgYzTNIovsWJWz3jvdlGvXvSq3KQmU2_rKP_VFDd1pfOSaVrtf5_9F34eKb4c</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Zaitsev, A. A.</creator><creator>Konyashin, I. Yu</creator><creator>Avdeenko, E. N.</creator><creator>Svyndina, N. V.</creator><creator>Levashov, E. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180701</creationdate><title>Structure and Magnetic Properties of WC–50% Co Model Alloys Containing TaC Additives</title><author>Zaitsev, A. A. ; Konyashin, I. Yu ; Avdeenko, E. N. ; Svyndina, N. V. ; Levashov, E. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-29cb6c7f1741c34ff1f5a0d2a1960138255e194b7078a36384a937aa0ae725653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Additives</topic><topic>Alloying additive</topic><topic>Alloys</topic><topic>Carbon</topic><topic>Carbon content</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt base alloys</topic><topic>Coercivity</topic><topic>Grain boundaries</topic><topic>Liquid phase sintering</topic><topic>Liquid phases</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Physical Metallurgy and Heat Treatment</topic><topic>Precipitates</topic><topic>Tantalum</topic><topic>Tungsten carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaitsev, A. A.</creatorcontrib><creatorcontrib>Konyashin, I. Yu</creatorcontrib><creatorcontrib>Avdeenko, E. N.</creatorcontrib><creatorcontrib>Svyndina, N. V.</creatorcontrib><creatorcontrib>Levashov, E. A.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Russian journal of non-ferrous metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaitsev, A. A.</au><au>Konyashin, I. Yu</au><au>Avdeenko, E. N.</au><au>Svyndina, N. V.</au><au>Levashov, E. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Magnetic Properties of WC–50% Co Model Alloys Containing TaC Additives</atitle><jtitle>Russian journal of non-ferrous metals</jtitle><stitle>Russ. J. Non-ferrous Metals</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>59</volume><issue>4</issue><spage>403</spage><epage>411</epage><pages>403-411</pages><issn>1067-8212</issn><eissn>1934-970X</eissn><abstract>The structure and magnetic properties of model high-cobalt WC–50% Co alloys with different carbon contents and TaC additions in the amount of 1.6–5.6 wt % are studied. Model alloys are fabricated by the liquid-phase sintering of powder mixtures at 1420°C, and their composition is described by the formula 50% Co + 50% WC +
x
% TaC +
y
% C, where
x
= 0, 1.6, 2.6, 3.6, 4.6, and 5.6 wt %;
y
= 0, 0.2, and 0.5 wt %. It is shown that precipitations of the (Ta,W)C phase are present in all studied alloys and (Ta,W)C precipitations are needle-shaped at a TaC concentration up to 3.6 wt %, while the (Ta,W)C grains become spherical at =3.6 wt %. The (Ta,W)C precipitations are arranged both in a binding phase and along the WC grain boundaries. The lattice parameter of the (Ta,W)C phase in alloys with a low carbon content lies in a range from 0.4438 nm for the alloy with 1.6% TaC to 0.4451 nm for the alloy with 4.6% TaC. It is established by the EDX analysis that the concentration of dissolved tungsten in a cobalt phase is independent of the TaC content and strongly depends on the total carbon content; it is 7, 12, and 17 wt % for alloys with high, elevated, and low carbon contents, respectively. The TaC addition in alloys with a low and elevated carbon content leads to an increase in the coercive force up to 875 A/m and a decrease in the magnetic saturation by 5–10 G m
3
/g. The experimental results made it possible to put forward a hypothesis on the possibility of formation of dispersed tantalum-containing precipitates in a binder phase.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1067821218040132</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1067-8212 |
ispartof | Russian journal of non-ferrous metals, 2018-07, Vol.59 (4), p.403-411 |
issn | 1067-8212 1934-970X |
language | eng |
recordid | cdi_proquest_journals_2093063246 |
source | SpringerLink Journals |
subjects | Additives Alloying additive Alloys Carbon Carbon content Chemistry and Materials Science Cobalt base alloys Coercivity Grain boundaries Liquid phase sintering Liquid phases Magnetic properties Magnetic saturation Materials Science Metallic Materials Physical Metallurgy and Heat Treatment Precipitates Tantalum Tungsten carbide |
title | Structure and Magnetic Properties of WC–50% Co Model Alloys Containing TaC Additives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Magnetic%20Properties%20of%20WC%E2%80%9350%25%20Co%20Model%20Alloys%20Containing%20TaC%20Additives&rft.jtitle=Russian%20journal%20of%20non-ferrous%20metals&rft.au=Zaitsev,%20A.%20A.&rft.date=2018-07-01&rft.volume=59&rft.issue=4&rft.spage=403&rft.epage=411&rft.pages=403-411&rft.issn=1067-8212&rft.eissn=1934-970X&rft_id=info:doi/10.3103/S1067821218040132&rft_dat=%3Cproquest_cross%3E2093063246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2093063246&rft_id=info:pmid/&rfr_iscdi=true |