Structure and Magnetic Properties of WC–50% Co Model Alloys Containing TaC Additives

The structure and magnetic properties of model high-cobalt WC–50% Co alloys with different carbon contents and TaC additions in the amount of 1.6–5.6 wt % are studied. Model alloys are fabricated by the liquid-phase sintering of powder mixtures at 1420°C, and their composition is described by the fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of non-ferrous metals 2018-07, Vol.59 (4), p.403-411
Hauptverfasser: Zaitsev, A. A., Konyashin, I. Yu, Avdeenko, E. N., Svyndina, N. V., Levashov, E. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 411
container_issue 4
container_start_page 403
container_title Russian journal of non-ferrous metals
container_volume 59
creator Zaitsev, A. A.
Konyashin, I. Yu
Avdeenko, E. N.
Svyndina, N. V.
Levashov, E. A.
description The structure and magnetic properties of model high-cobalt WC–50% Co alloys with different carbon contents and TaC additions in the amount of 1.6–5.6 wt % are studied. Model alloys are fabricated by the liquid-phase sintering of powder mixtures at 1420°C, and their composition is described by the formula 50% Co + 50% WC + x % TaC + y % C, where x = 0, 1.6, 2.6, 3.6, 4.6, and 5.6 wt %; y = 0, 0.2, and 0.5 wt %. It is shown that precipitations of the (Ta,W)C phase are present in all studied alloys and (Ta,W)C precipitations are needle-shaped at a TaC concentration up to 3.6 wt %, while the (Ta,W)C grains become spherical at =3.6 wt %. The (Ta,W)C precipitations are arranged both in a binding phase and along the WC grain boundaries. The lattice parameter of the (Ta,W)C phase in alloys with a low carbon content lies in a range from 0.4438 nm for the alloy with 1.6% TaC to 0.4451 nm for the alloy with 4.6% TaC. It is established by the EDX analysis that the concentration of dissolved tungsten in a cobalt phase is independent of the TaC content and strongly depends on the total carbon content; it is 7, 12, and 17 wt % for alloys with high, elevated, and low carbon contents, respectively. The TaC addition in alloys with a low and elevated carbon content leads to an increase in the coercive force up to 875 A/m and a decrease in the magnetic saturation by 5–10 G m 3 /g. The experimental results made it possible to put forward a hypothesis on the possibility of formation of dispersed tantalum-containing precipitates in a binder phase.
doi_str_mv 10.3103/S1067821218040132
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2093063246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093063246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-29cb6c7f1741c34ff1f5a0d2a1960138255e194b7078a36384a937aa0ae725653</originalsourceid><addsrcrecordid>eNp1UN1KwzAUDqLgnD6AdwHxsnqSNE1zOYp_sKGw-XNXsjYtHTWZSSrsznfwDX0SMyZ4IV6dc_j-OB9CpwQuGAF2OSeQiZwSSnJIgTC6h0ZEsjSRAl724x7hZIsfoiPvVwCcSy5H6Gke3FCFwWmsTI1nqjU6dBV-cHatXei0x7bBz8XXxyeHc1xYPLO17vGk7-3Gx9sE1ZnOtHihCjyp6y5079ofo4NG9V6f_Mwxery-WhS3yfT-5q6YTJOKcRkSKqtlVomGiJRULG0a0nAFNVVEZvGJnHKuiUyXAkSuWMbyVEkmlAKlBeUZZ2N0tvNdO_s2aB_KlR2ciZElBckgYzTNIovsWJWz3jvdlGvXvSq3KQmU2_rKP_VFDd1pfOSaVrtf5_9F34eKb4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093063246</pqid></control><display><type>article</type><title>Structure and Magnetic Properties of WC–50% Co Model Alloys Containing TaC Additives</title><source>SpringerLink Journals</source><creator>Zaitsev, A. A. ; Konyashin, I. Yu ; Avdeenko, E. N. ; Svyndina, N. V. ; Levashov, E. A.</creator><creatorcontrib>Zaitsev, A. A. ; Konyashin, I. Yu ; Avdeenko, E. N. ; Svyndina, N. V. ; Levashov, E. A.</creatorcontrib><description>The structure and magnetic properties of model high-cobalt WC–50% Co alloys with different carbon contents and TaC additions in the amount of 1.6–5.6 wt % are studied. Model alloys are fabricated by the liquid-phase sintering of powder mixtures at 1420°C, and their composition is described by the formula 50% Co + 50% WC + x % TaC + y % C, where x = 0, 1.6, 2.6, 3.6, 4.6, and 5.6 wt %; y = 0, 0.2, and 0.5 wt %. It is shown that precipitations of the (Ta,W)C phase are present in all studied alloys and (Ta,W)C precipitations are needle-shaped at a TaC concentration up to 3.6 wt %, while the (Ta,W)C grains become spherical at =3.6 wt %. The (Ta,W)C precipitations are arranged both in a binding phase and along the WC grain boundaries. The lattice parameter of the (Ta,W)C phase in alloys with a low carbon content lies in a range from 0.4438 nm for the alloy with 1.6% TaC to 0.4451 nm for the alloy with 4.6% TaC. It is established by the EDX analysis that the concentration of dissolved tungsten in a cobalt phase is independent of the TaC content and strongly depends on the total carbon content; it is 7, 12, and 17 wt % for alloys with high, elevated, and low carbon contents, respectively. The TaC addition in alloys with a low and elevated carbon content leads to an increase in the coercive force up to 875 A/m and a decrease in the magnetic saturation by 5–10 G m 3 /g. The experimental results made it possible to put forward a hypothesis on the possibility of formation of dispersed tantalum-containing precipitates in a binder phase.</description><identifier>ISSN: 1067-8212</identifier><identifier>EISSN: 1934-970X</identifier><identifier>DOI: 10.3103/S1067821218040132</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Additives ; Alloying additive ; Alloys ; Carbon ; Carbon content ; Chemistry and Materials Science ; Cobalt base alloys ; Coercivity ; Grain boundaries ; Liquid phase sintering ; Liquid phases ; Magnetic properties ; Magnetic saturation ; Materials Science ; Metallic Materials ; Physical Metallurgy and Heat Treatment ; Precipitates ; Tantalum ; Tungsten carbide</subject><ispartof>Russian journal of non-ferrous metals, 2018-07, Vol.59 (4), p.403-411</ispartof><rights>Allerton Press, Inc. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-29cb6c7f1741c34ff1f5a0d2a1960138255e194b7078a36384a937aa0ae725653</citedby><cites>FETCH-LOGICAL-c359t-29cb6c7f1741c34ff1f5a0d2a1960138255e194b7078a36384a937aa0ae725653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1067821218040132$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1067821218040132$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zaitsev, A. A.</creatorcontrib><creatorcontrib>Konyashin, I. Yu</creatorcontrib><creatorcontrib>Avdeenko, E. N.</creatorcontrib><creatorcontrib>Svyndina, N. V.</creatorcontrib><creatorcontrib>Levashov, E. A.</creatorcontrib><title>Structure and Magnetic Properties of WC–50% Co Model Alloys Containing TaC Additives</title><title>Russian journal of non-ferrous metals</title><addtitle>Russ. J. Non-ferrous Metals</addtitle><description>The structure and magnetic properties of model high-cobalt WC–50% Co alloys with different carbon contents and TaC additions in the amount of 1.6–5.6 wt % are studied. Model alloys are fabricated by the liquid-phase sintering of powder mixtures at 1420°C, and their composition is described by the formula 50% Co + 50% WC + x % TaC + y % C, where x = 0, 1.6, 2.6, 3.6, 4.6, and 5.6 wt %; y = 0, 0.2, and 0.5 wt %. It is shown that precipitations of the (Ta,W)C phase are present in all studied alloys and (Ta,W)C precipitations are needle-shaped at a TaC concentration up to 3.6 wt %, while the (Ta,W)C grains become spherical at =3.6 wt %. The (Ta,W)C precipitations are arranged both in a binding phase and along the WC grain boundaries. The lattice parameter of the (Ta,W)C phase in alloys with a low carbon content lies in a range from 0.4438 nm for the alloy with 1.6% TaC to 0.4451 nm for the alloy with 4.6% TaC. It is established by the EDX analysis that the concentration of dissolved tungsten in a cobalt phase is independent of the TaC content and strongly depends on the total carbon content; it is 7, 12, and 17 wt % for alloys with high, elevated, and low carbon contents, respectively. The TaC addition in alloys with a low and elevated carbon content leads to an increase in the coercive force up to 875 A/m and a decrease in the magnetic saturation by 5–10 G m 3 /g. The experimental results made it possible to put forward a hypothesis on the possibility of formation of dispersed tantalum-containing precipitates in a binder phase.</description><subject>Additives</subject><subject>Alloying additive</subject><subject>Alloys</subject><subject>Carbon</subject><subject>Carbon content</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt base alloys</subject><subject>Coercivity</subject><subject>Grain boundaries</subject><subject>Liquid phase sintering</subject><subject>Liquid phases</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Physical Metallurgy and Heat Treatment</subject><subject>Precipitates</subject><subject>Tantalum</subject><subject>Tungsten carbide</subject><issn>1067-8212</issn><issn>1934-970X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UN1KwzAUDqLgnD6AdwHxsnqSNE1zOYp_sKGw-XNXsjYtHTWZSSrsznfwDX0SMyZ4IV6dc_j-OB9CpwQuGAF2OSeQiZwSSnJIgTC6h0ZEsjSRAl724x7hZIsfoiPvVwCcSy5H6Gke3FCFwWmsTI1nqjU6dBV-cHatXei0x7bBz8XXxyeHc1xYPLO17vGk7-3Gx9sE1ZnOtHihCjyp6y5079ofo4NG9V6f_Mwxery-WhS3yfT-5q6YTJOKcRkSKqtlVomGiJRULG0a0nAFNVVEZvGJnHKuiUyXAkSuWMbyVEkmlAKlBeUZZ2N0tvNdO_s2aB_KlR2ciZElBckgYzTNIovsWJWz3jvdlGvXvSq3KQmU2_rKP_VFDd1pfOSaVrtf5_9F34eKb4c</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Zaitsev, A. A.</creator><creator>Konyashin, I. Yu</creator><creator>Avdeenko, E. N.</creator><creator>Svyndina, N. V.</creator><creator>Levashov, E. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180701</creationdate><title>Structure and Magnetic Properties of WC–50% Co Model Alloys Containing TaC Additives</title><author>Zaitsev, A. A. ; Konyashin, I. Yu ; Avdeenko, E. N. ; Svyndina, N. V. ; Levashov, E. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-29cb6c7f1741c34ff1f5a0d2a1960138255e194b7078a36384a937aa0ae725653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Additives</topic><topic>Alloying additive</topic><topic>Alloys</topic><topic>Carbon</topic><topic>Carbon content</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt base alloys</topic><topic>Coercivity</topic><topic>Grain boundaries</topic><topic>Liquid phase sintering</topic><topic>Liquid phases</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Physical Metallurgy and Heat Treatment</topic><topic>Precipitates</topic><topic>Tantalum</topic><topic>Tungsten carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaitsev, A. A.</creatorcontrib><creatorcontrib>Konyashin, I. Yu</creatorcontrib><creatorcontrib>Avdeenko, E. N.</creatorcontrib><creatorcontrib>Svyndina, N. V.</creatorcontrib><creatorcontrib>Levashov, E. A.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Russian journal of non-ferrous metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaitsev, A. A.</au><au>Konyashin, I. Yu</au><au>Avdeenko, E. N.</au><au>Svyndina, N. V.</au><au>Levashov, E. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Magnetic Properties of WC–50% Co Model Alloys Containing TaC Additives</atitle><jtitle>Russian journal of non-ferrous metals</jtitle><stitle>Russ. J. Non-ferrous Metals</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>59</volume><issue>4</issue><spage>403</spage><epage>411</epage><pages>403-411</pages><issn>1067-8212</issn><eissn>1934-970X</eissn><abstract>The structure and magnetic properties of model high-cobalt WC–50% Co alloys with different carbon contents and TaC additions in the amount of 1.6–5.6 wt % are studied. Model alloys are fabricated by the liquid-phase sintering of powder mixtures at 1420°C, and their composition is described by the formula 50% Co + 50% WC + x % TaC + y % C, where x = 0, 1.6, 2.6, 3.6, 4.6, and 5.6 wt %; y = 0, 0.2, and 0.5 wt %. It is shown that precipitations of the (Ta,W)C phase are present in all studied alloys and (Ta,W)C precipitations are needle-shaped at a TaC concentration up to 3.6 wt %, while the (Ta,W)C grains become spherical at =3.6 wt %. The (Ta,W)C precipitations are arranged both in a binding phase and along the WC grain boundaries. The lattice parameter of the (Ta,W)C phase in alloys with a low carbon content lies in a range from 0.4438 nm for the alloy with 1.6% TaC to 0.4451 nm for the alloy with 4.6% TaC. It is established by the EDX analysis that the concentration of dissolved tungsten in a cobalt phase is independent of the TaC content and strongly depends on the total carbon content; it is 7, 12, and 17 wt % for alloys with high, elevated, and low carbon contents, respectively. The TaC addition in alloys with a low and elevated carbon content leads to an increase in the coercive force up to 875 A/m and a decrease in the magnetic saturation by 5–10 G m 3 /g. The experimental results made it possible to put forward a hypothesis on the possibility of formation of dispersed tantalum-containing precipitates in a binder phase.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1067821218040132</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1067-8212
ispartof Russian journal of non-ferrous metals, 2018-07, Vol.59 (4), p.403-411
issn 1067-8212
1934-970X
language eng
recordid cdi_proquest_journals_2093063246
source SpringerLink Journals
subjects Additives
Alloying additive
Alloys
Carbon
Carbon content
Chemistry and Materials Science
Cobalt base alloys
Coercivity
Grain boundaries
Liquid phase sintering
Liquid phases
Magnetic properties
Magnetic saturation
Materials Science
Metallic Materials
Physical Metallurgy and Heat Treatment
Precipitates
Tantalum
Tungsten carbide
title Structure and Magnetic Properties of WC–50% Co Model Alloys Containing TaC Additives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Magnetic%20Properties%20of%20WC%E2%80%9350%25%20Co%20Model%20Alloys%20Containing%20TaC%20Additives&rft.jtitle=Russian%20journal%20of%20non-ferrous%20metals&rft.au=Zaitsev,%20A.%20A.&rft.date=2018-07-01&rft.volume=59&rft.issue=4&rft.spage=403&rft.epage=411&rft.pages=403-411&rft.issn=1067-8212&rft.eissn=1934-970X&rft_id=info:doi/10.3103/S1067821218040132&rft_dat=%3Cproquest_cross%3E2093063246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2093063246&rft_id=info:pmid/&rfr_iscdi=true